The purpose of this study was to evaluate the effects of gene silencing on the immunoexpression of light chain 3 beta (Lc3b), glucose regulating protein 78 (Grp78), heat shock cognate 71 (Hsc70), mammalian target of rapamycin (mTOR) and lysosomal-associated membrane protein 2A (Lamp2a) in the lung tissue of developing () and wild-type (wt) mice. The lung epithelium and mesenchyme of the embryos at gestational days E13.5 and E15.5 were examined using immunofluorescence and semi-quantitative methods. In the pulmonary mesenchyme and epithelium, Grp78 and Lc3b of moderate fluorescence reactivity was demonstrated in wt mice for both evaluated time points, while mice exhibited only epithelial reactivity for the same markers. Mild punctate expression of Hsc70 was observed for both genotypes. A significant difference was present when analyzing mTOR expression, where wt mice showed strong perinuclear staining in the epithelium. According to our data, gene silencing may result in autophagy abnormalities, which could then cause respiratory system pathologies via defective lung cell degradation by lysosome-dependent cell elimination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971152PMC
http://dx.doi.org/10.3390/life14030316DOI Listing

Publication Analysis

Top Keywords

gene silencing
12
unraveling impact
4
impact gene
4
silencing expression
4
expression autophagy
4
autophagy markers
4
lung
4
markers lung
4
lung development
4
development purpose
4

Similar Publications

To regulate brain function, peripheral compounds must traverse the blood-brain barrier (BBB), an interface between the brain and the circulatory system. To determine whether specific transport mechanisms are relevant for sleep, we conducted a BBB-specific inducible RNAi knockdown (iKD) screen for genes affecting sleep in . We observed reduced sleep with knockdown of solute carrier , a carnitine transporter, as determined by isotope flux.

View Article and Find Full Text PDF

Background: Differential DNA methylation in the promoter region of tumour suppressor genes leads to gene function silencing.

Materials And Methods: In this study, we aimed to evaluate the salivary promoter methylation of EDNRB, MGMT and TIMP3 genes in H&NC patients (n = 100), premalignant lesions patients (n = 25) and healthy controls (n = 50). Blood and saliva samples were collected from all three groups and 20 concomitant tumour tissues were collected from the H&NC patients.

View Article and Find Full Text PDF

CRISPR-Cas-mediated adaptation of Thermus thermophilus HB8 to environmental stress conditions.

Arch Microbiol

January 2025

Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE 106 91, Sweden.

Bacteria experience a continual array of environmental stresses, necessitating adaptive mechanisms crucial for their survival. Thermophilic bacteria, such as Thermus thermophilus, face constant environmental challenges, particularly high temperatures, which requires robust adaptive mechanisms for survival. Studying these extremophiles provides valuable insights into the intricate molecular and physiological processes used by extremophiles to adapt and survive in harsh environments.

View Article and Find Full Text PDF

Unlabelled: Climate change is predicted to increase the spread of mosquito-borne viruses, but genetic mechanisms underlying the influence of environmental variation on the ability of insect vectors to transmit human pathogens is unknown. In response to a changing climate, mosquitoes will experience longer periods of drought. An important physiological response to dry environments is the protection against dehydration, here defined as desiccation tolerance.

View Article and Find Full Text PDF

A scalable CRISPR-Cas9 gene editing system facilitates CRISPR screens in the malaria parasite Plasmodium berghei.

Nucleic Acids Res

January 2025

The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden.

Many Plasmodium genes remain uncharacterized due to low genetic tractability. Previous large-scale knockout screens have only been able to target about half of the genome in the more genetically tractable rodent malaria parasite Plasmodium berghei. To overcome this limitation, we have developed a scalable CRISPR system called P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!