Compelling evidence indicates that nitric oxide (NO) exerts a significant influence on the central nervous system, participates in the modulation of neurotransmitter release, contributes to the regulation of cognitive functions, and plays a crucial role in modulating various aspects of neural activity. We aimed to explore the influence of two NO donors, molsidomine (MSD) and V-pyrro/NO, on the innate spontaneous psychomotor abilities and short-term memory in rats. Using an actimeter test, the locomotor activity, stress-sensitive behavior, and anxiety level were investigated. The influence on the animal`s cognitive functions was evaluated usingthe Y-maze test to assess the spontaneous alternation percentage, number of arms visited, number of alternations, and the preference index. Four distinct groups of five white male Wistar rats were exposed to the intraperitoneal treatments as follows: Control batch-0.3 mL/100 g of body weight saline solution, Mg batch-200 mg/kbwof magnesium chloride, MSD batch-1 mg/kbw of molsidomine, and V-pyrro/NO batch-5 mg/kbwof V-pyrro/NO. The intraperitoneal administration of MSD resulted in a significant reduction in spontaneous behavior and exploratory skills but was less pronounced than the positive control drug, magnesium chloride. Conversely, treatment with V-pyrro/NO led to only a slight decrease in horizontal movements during the actimeter test. MSD administration, but not V-pyrro/NO, notably increased the rate of spontaneous alternation in the Y-maze test. Additionally, the use of MSD resulted in an increase in the blood level of brain-derived neurotrophic factor and the intensification of the antioxidant enzymes, superoxide dismutase, and glutathione peroxidase activity. In our experimental setup, we demonstrated that MSD exposure led to a decrease in spontaneous behavior, showed anxiolytic effects and antioxidant activity, and improved spatial memory acquisition in rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971537 | PMC |
http://dx.doi.org/10.3390/life14030306 | DOI Listing |
Sci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFMed Phys
January 2025
National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Respiratory motion during radiotherapy (RT) may reduce the therapeutic effect and increase the dose received by organs at risk. This can be addressed by real-time tracking, where respiration motion prediction is currently required to compensate for system latency in RT systems. Notably, for the prediction of future images in image-guided adaptive RT systems, the use of deep learning has been considered.
View Article and Find Full Text PDFComput Biol Med
January 2025
LMA Laboratory, University of Bejaia, Bejaia 06000, Algeria. Electronic address:
Social networks are increasingly taking over daily life, creating a volume of unsecured data and making it very difficult to capture safe data, especially in times of crisis. This study aims to use a Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM)-based hybrid model for health monitoring and health crisis forecasting. It consists of efficiently retrieving safe content from multiple social media sources.
View Article and Find Full Text PDFJ Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFImmun Ageing
January 2025
Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA.
Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!