This study presents the results of applying the methods of synthesizing mesoporous carbon and mesoporous polymer materials with an extended porous mesostructure as adsorbents for cationic dye molecules. Both types of adsorbents are synthetic materials. The aim of the presented research was the preparation, characterisation, and utilisation of obtained mesoporous adsorbents. The physicochemical properties, morphology, and porous structure characteristics of the obtained materials were determined using low-temperature nitrogen sorption isotherms, X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and potentiometric titration measurements. The morphology and microstructure were imaged using scanning electron microscopy (SEM). The chemical characterisation of the surface chemistry of the adsorbents, which provides information about the surface-active groups, the elemental composition, and the electronic state of the elements, was carried out using X-ray photoelectron spectroscopy (XPS). The adsorption properties of the mesoporous materials were determined using equilibrium and kinetic adsorption experiments for three selected cationic dyes (derivatives of thiazine (methylene blue) and triarylmethane (malachite green and crystal violet)). The adsorption capacity was analysed to the nanostructural and surface properties of used materials. The Generalized Langmuir equation was applied for the analysis of adsorption isotherm data. The adsorption study showed that the carbon materials have a higher sorption capacity for both methylene blue and crystal violet, e.g., 0.88-1.01 mmol/g and 0.33-0.44 mmol/g, respectively, compared to the polymer materials (e.g., 0.038-0.044 mmol/g and 0.038-0.050 mmol/g, respectively). The kinetics of dyes adsorption was closely correlated with the structural properties of the adsorbents. The kinetic data were analysed using various equations: first-order (FOE), second-order (SOE), mixed 1,2-order (MOE), multi-exponential (m-exp), and fractal-like MOE (f-MOE).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10972029 | PMC |
http://dx.doi.org/10.3390/ma17061374 | DOI Listing |
Gels
December 2024
Chemistry Department, Faculty of Science, Taibah University, Medina Munwarah 42353, Saudi Arabia.
This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride (CTAC) as dual templates and permitted the synthesis of spherical mesoporous silica with a high surface area (1011.42 m/g).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada. Electronic address:
Synthetic dye production and the consequent generation of dye-rich wastewater are major concerns of water quality in many countries. We developed a sustainable approach with deep eutectic solvent (DES) treatment to enhance the efficiency of mixed cellulose ester (MCE) membrane-based dye removal material. The DES composition and treatment conditions were optimized, and the treated membranes were comprehensively characterized.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, South Korea.
One of the most significant challenges for image-guided cancer-targeted therapy is to develop multifunctional optical contrast agents enabling simultaneous targeting and therapy. Herein, a feasible strategy is based on the incorporation of therapeutic moieties into the non-delocalized structure of polymethine indocyanines, known as the "structure-inherent targeting" concept. By possessing a rigid chloro-cyclohexenyl ring in the heptamethine cyanine backbone, a new type of multifunctional near-infrared fluorescent dye, Ph790H, that targets tumor without the need for additional targeting ligands is synthesized.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Petroleum and Gas Engineering Southwest Petroleum University, Chengdu, 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, 610500, PR China. Electronic address:
Adjusting the structure of the membrane and improving its performance proved to be an effective technique for accomplishing efficient dye wastewater purification. Water erosion of polyvinylpyrrolidone (PVP) core in polyacrylonitrile (PAN) nanofiber membrane modified with UiO-66-NH was successfully achieved, in this study, using coaxial electrospinning, and ZIF-8 with excellent performance was further epitaxy-grown in situ. Two differently shaped and positively charged MOFs confer strong adsorption capacity (adsorption capacity >2042 mg/g) on cationic dyes.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Environmental Engineering, Ondokuz Mayıs Üniversitesi, Samsun, Turkey.
This study aims to develop a stable and efficient magnetic nanocomposite hydrogel (MNCH) for selective removal of methylene blue (MB) and crystal violet (CV). MNCHs with different FeO contents (0-9 wt%) were synthesized following graft co-polymerization method using sodium alginate, acrylamide, itaconic acid, ammonium persulfate and N,N-methylene bisacrylamide. Among them, MNCH, with 5 wt% FeO, showed highest removal efficiency (>95 %).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!