Coke plays a key role as the skeleton of the charge column in BF. The gas path formed by the coke layer in the BF has a decisive influence on gas permeability. At high temperatures, the interface between coke and ore undergoes a melting reaction of coke and a reduction reaction of ore. The better the reducibility of the ore, the more conducive it is to the coupling reaction of ore and coke. The melting loss reaction of coke becomes more intense, and the corresponding strength of coke will decrease, which will affect the permeability of the blast furnace and is not conducive to the smooth operation of the blast furnace. Especially with a deterioration in iron ore quality, BF operation faces severe challenges, which makes it necessary to find an effective way to strengthen BF operation. In this study, a melting-dropping furnace was used to develop and clarify the high-temperature interaction between coke and iron ores with different layer thicknesses. The influencing factors were studied by establishing a gas permeability mathematical model and observing the metallographic microscope images of samples after the coke solution loss reaction. The relationships between coke layer thickness, distribution of gas flow, and pressure drop were obtained. The results showed that, under certain conditions, the gas permeability property of a furnace burden has been improved after the coke layer thickness increased. Upon observing the size of coke particles at the interface reaction site, the degree of melting loss reaction can be determined. A smaller particle size indicates more melting loss reaction. A dripping eigenvalue for molten metal was introduced to evaluate the dynamic changes in the comprehensive dripping properties of molten metal of furnace burden, which showed that the dripping eigenvalue for the molten metal could deteriorate because of the unruly thickness and the coke layer thickness should be limited through considering the operational indicators of the blast furnace.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10972131 | PMC |
http://dx.doi.org/10.3390/ma17061358 | DOI Listing |
J Colloid Interface Sci
April 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Electronic address:
Langmuir
December 2024
School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
Coal-based needle coke (CNC) is an ideal carbon precursor for capacitive materials due to its layered graphitic structure and high electrical conductivity. However, the pore-rich engineering and graphitic structural inheriting of CNC-derived carbon during the conventional activation process present challenges. Herein, a surface oxygen engineering catalytic pore tailoring strategy is developed to manipulate the porous structures of CNC-derived porous carbon.
View Article and Find Full Text PDFiScience
November 2024
School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China.
This study presents a non-equimolar diffusion model to enhance the predictive accuracy of coke degradation kinetics in hydrogen-rich blast furnaces, where elevated water vapor (HO) levels are present. The model integrates the unreacted core shrink model with the Maxwell-Stefan equation to delineate the 3D curved surface distribution of HO concentration and the effective diffusion coefficient within the coke ash layer. Validated against experimental data, the model demonstrated a significant improvement in accuracy, with a deviation range of 0.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
School of Chemical Sciences & Technology, School of Materials and Energy, Institute of Frontier Technologies in Water Treatment, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, China.
Chloride ions readily react with organic matter and other ions, resulting in the formation of disinfection by-products (DBPs) that exhibit heightened levels of toxicity, carcinogenicity, and mutagenicity. This study creatively employed waste walnut shells as self-templates and low-cost magnesium bicarbonate as a rigid template to successfully synthesize multifunctional porous carbon derived from walnut shells. Employing a series of characterization techniques, it was ascertained that the porous carbon material (WSC/Mg) synthesized via the dual-template method exhibited a distinct layered microscopic surface structure, with a predominance of C and O elements on the surface.
View Article and Find Full Text PDFPrecis Chem
June 2024
Institute of Advanced Technology, Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, P. R. China.
Propane dehydrogenation (PDH), an atom-economic reaction to produce high-value-added propylene and hydrogen with high efficiency, has recently attracted extensive attention. The severe deactivation of Pt-based catalysts through sintering and coking remains a major challenge in this high-temperature reaction. The introduction of Sn as a promoter has been widely applied to improve the stability and selectivity of the catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!