High-temperature wetting of natural, high-purity quartz (SiO) and liquid magnesium (Mg) was investigated at temperatures between 973 and 1273 K. Sessile drop experiments using the capillary purification (CP) procedure were carried out under an Ar gas atmosphere (N6.0), eliminating the native oxide layer on the surface of Mg melt. The results showed that the wetting behavior was strongly dependent on temperature. At 973 and 1073 K, the wetting system displayed relatively large contact angles of 90° and 65°, respectively, demonstrating modest wetting. The wetting increased to some extent by increasing the temperature to 1123 K with a wetting angle of 22°. However, the SiO/Mg system demonstrated complete wetting at temperatures of 1173 K and above. Furthermore, interface microstructure examination showed different reaction product phases/microstructures, depending on the wetting experiment temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10972395 | PMC |
http://dx.doi.org/10.3390/ma17061302 | DOI Listing |
Syst Rev
January 2025
Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Postal Code, 35516, Egypt.
Background: Hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA)-free adhesive systems are gaining increasing popularity nowadays. Although the addition of HEMA to dental adhesives improves dentin wettability and resin diffusion into demineralized collagen fibrils, HEMA's high hydrophilicity can lead to hydrolytic degradation of the adhesive interface. Thus, HEMA-free adhesive systems have been developed.
View Article and Find Full Text PDFEur Phys J E Soft Matter
January 2025
Department of Fundamental Physics, Faculty of Physics, Alzahra University, Tehran, 1993891167, Iran.
A liquid drop resting on a soft substrate is numerically simulated as an energy minimization problem. The elastic substrate is modeled as a cubic lattice of mass-springs, to which an energy term controlling the change of volume is associated. The interfacial energy between three phases of solid, liquid, and vapor is also introduced.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
University of Zagreb, Faculty of Science, Department of Chemistry, Zagreb, HR-10000, Croatia.
The phenomenon of solid dissolution into a solution constitutes a fundamental aspect in both natural and industrial contexts. Nevertheless, its intricate nature at the microscale poses a significant challenge for precise quantitative characterization at a foundational level. In this work, the influence across three specific cleavage planes, namely (100), (111), and (110) on the dissolution kinetics of fluorite in aqueous environments was examined from both experimental and theoretical standpoints.
View Article and Find Full Text PDFLangmuir
January 2025
Materials Science and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India.
Meso/microporous nano silica modified with macromolecular polymers produces attractive hybrids that repel water and have a hydrophobic surface, making them highly effective for targeting and eliminating organic contaminants in aquatic environments. In this study, nano silica was functionalized with silicone oil, an oligomeric siloxane derivative, to produce a hydrophobic silica nano hybrid characterized by a non-wetting water contact angle of 139°. This hydrophobic hybrid nano silica showed a sustainable floating nature on water even in turbulent streams.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Stomatology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P. R. China.
Micro- and nanomorphological modification and roughening of titanium implant surfaces can enhance osseointegration; however, the optimal morphology remains unclear. Laser processing of implant surfaces has demonstrated significant potential due to its precision, controllability, and environmental friendliness. Femtosecond lasers, through precise optimization of processing parameters, can modify the surface of any solid material to generate micro- and nanomorphologies of varying scales and roughness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!