Micro-/Meso-Structure Control of Multi-Hostmetal Alloys by Massive Nitrogen Supersaturation.

Materials (Basel)

Surface Engineering Design Laboratory, Shibaura Institute of Technology, Tokyo 144-0045, Japan.

Published: March 2024

AI Article Synopsis

Article Abstract

The low-temperature plasma nitriding was utilized to describe the microscopic solid-phase separation in the austenitic stainless-steel type AISI316, induced by the nitrogen supersaturation. This nitrogen supersaturated layer with the thickness of 60 μm had a two-phase nanostructure where the nitrogen-poor and nitrogen-rich clusters separated from each other. Due to this microscopic solid-phase separation, iron and nickel atoms decomposed themselves from chromium atoms and nitrogen solutes in this nitrogen supersaturated AISI316 layer. These microscopic cluster separation and chemical decomposition among the constituent elements in AISI316 were induced in the multi-dimensional scale by the plastic straining along the slip lines in the (111)-orientation from the surface to the depth of matrix. The nitrogen solute diffused through the cluster boundaries into the depth. With the aid of masking technique, this nitrogen supersaturation and nanostructuring was controlled to take place only in the unmasked AISI316 matrix. The nanostructures with two separated clusters were mesoscopically embedded into AISI316 matrix after the masking micro-textures. This microscopic and mesoscopic structure control was available in surface treatment of multi-host metals such as superalloys and high entropy alloys.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10972265PMC
http://dx.doi.org/10.3390/ma17061294DOI Listing

Publication Analysis

Top Keywords

nitrogen supersaturation
12
microscopic solid-phase
8
solid-phase separation
8
aisi316 induced
8
nitrogen supersaturated
8
aisi316 matrix
8
nitrogen
7
aisi316
5
micro-/meso-structure control
4
control multi-hostmetal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!