This study explores the combined potential of severe plastic deformation (SPD) via differential speed rolling (DSR) and plasma electrolytic oxidation (PEO) to enhance the material performance of 6061 Al alloys. To this end, DSR was carried out at a roll-speed-ratio of 1:4 to obtain ~75% total thickness reduction and a final microstructure of <1 µm. The rest of the samples were annealed to obtain various grain sizes of ~1, ~25, and ~55 μm. Through DSR, the hardness of the material increased from ~64 to ~102 HV. Different grain sizes altered the plasma behavior which further influence the growth of the coating layer, where the fine grain size produced a compact structure beneficial for corrosion protection. This synergy offers tailored materials ideal for high-performance applications across diverse industries, combining enhanced bulk properties from DSR with optimized surface attributes from PEO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10972456 | PMC |
http://dx.doi.org/10.3390/ma17061252 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
This paper presents the results of a pilot application of Powder-Bed Fusion of Metals Using a Laser (PBF-LB/M) for the fabrication of M300 (1.2709) maraging steel sheet metal bending tools. S235 steel was used as a substrate for the fabrication of bending punches.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
High-entropy alloys (HEAs) with ultrafine grained and high strength can be prepared by mechanical alloying (MA) followed by sintering. Therefore, MA, as a unique solid powder processing method, has many effects on the microstructures and mechanical properties of the sintered bulk HEAs. This work focused on the alloying behavior, morphology, and phase evolution of FeCrNiAl (x = 1.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemistry, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Trichy 621112, Tamilnadu, India.
This study aims to optimize the Wire Electrical Discharge Machining (EDM) process parameters for aluminum 6061 alloy reinforced with Mg and MoS using the Box-Behnken (BBD) design and the non-dominated sorting genetic (NSGA-II) algorithm. The objective is to enhance the machining efficiency and quality of the composite material. The Box-Behnken (BBD) design was utilized to design a set of experiments with varying levels of process parameters, comprising pulse-on time, servo volt, and current.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
The fracture position of a friction plug welding (FPW) joint is typically located at or near the thermo-mechanically affected zone (TMAZ). Here, we found that microcracks in all FPW specimens initiate at the deformed plug center (DPC) zone and then propagate through the plug center along 45° shear surfaces, because the lowest hardness occurs at the DPC zone rather than the TMAZ or other zones, and the DPC zone presents a tilt fiber-like microstructure. Such a tilt microstructure stimulates formations and deformations of microvoids and propagation of microcracks along 45° shear surfaces.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Faculty of Civil Engineering, Warsaw University of Technology, 00-637 Warsaw, Poland.
Aluminium alloys are characterised by a rounded stress-strain relationship, with no sharply defined yield point. For example, aluminium alloy grades 6061-T6, 6082-T6, and 7075-T6 exhibit low-hardening response, which is close to linear elastic-linear plastic hardening characteristics. Commonly, the behaviour of aluminium alloys is described by Ramberg-Osgood (RO) one-dimensional constitutive relationship in the format of strain in terms of stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!