Impregnated Polymeric Sorbent for the Removal of Noble Metal Ions from Model Chloride Solutions and the RAM Module.

Materials (Basel)

Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland.

Published: March 2024

Nowadays, there is a need for new sources of noble metals due to their dwindling natural resources. This paper presents studies on the sorption of noble metals such as Au(III), Pt(IV), Pd(II) and Rh(III) from model chloride solutions on a newly prepared Amberlite XAD-16-Aliquat 336 sorbent. A "warm impregnation" method without the use of toxic organic solvents was applied to impregnate the polymer matrix. The influence of such factors as hydrochloric acid concentration, sorbent mass and phase contact time was investigated. Kinetic as well as adsorption isotherm studies were carried out. The sorption capacity of the synthesized sorbent was Au(III)-94.34 mg/g, Pt(IV)-45.35 mg/g and Pd(II)-46.03 mg/g. Based on thermodynamic considerations, their sorption proved to be endothermic, as the values of ΔH° > 0. Sorption was spontaneous and favourable (ΔG° < 0). After leaching the RAM module, there was obtained a real solution, in which the metal contents were determined: 38.10 mg/g of gold and 1.76 mg/g of palladium. Totals of 99.9% of gold and 45.4% of palladium were removed from the real leaching solution, with other elements in the solution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10972195PMC
http://dx.doi.org/10.3390/ma17061234DOI Listing

Publication Analysis

Top Keywords

model chloride
8
chloride solutions
8
ram module
8
noble metals
8
mg/g
5
impregnated polymeric
4
sorbent
4
polymeric sorbent
4
sorbent removal
4
removal noble
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!