Aviation mutagenesis is a fast and efficient breeding method. In this study, we analyzed the effect of aviation mutagenesis on volatile compounds and odor characteristics in Dahongpao fresh leaves and gross tea for the first time. The results showed that aviation mutagenesis significantly increased the total volatile compounds of Dahongpao fresh leaves and gross tea. Aviation mutagenesis most critically significantly increased the content of beta-myrcene in Dahongpao fresh leaves, prompting its conversion to beta-pinene, cubebol, beta-phellandrene, zingiberene, (,)-3,6-nonadienal, and 6-pentyloxan-2-one after processing, which in turn enhanced the fruity, green, spicy, and woody odor characteristics of the gross tea. This study provided a reference for further exploration of aviation mutagenic breeding of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969991PMC
http://dx.doi.org/10.3390/foods13060946DOI Listing

Publication Analysis

Top Keywords

aviation mutagenesis
20
volatile compounds
12
dahongpao fresh
12
fresh leaves
12
gross tea
12
compounds dahongpao
8
odor characteristics
8
leaves gross
8
aviation
6
mutagenesis alters
4

Similar Publications

Background: Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored.

View Article and Find Full Text PDF

[Study on differences in metabolism and transcription of ginseng seeds after morphological post ripening by space flight].

Zhongguo Zhong Yao Za Zhi

September 2024

Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences Changchun 130112, China College of Pharmacy and Biological Engineering, Chengdu University Chengdu 610106, China.

To explore the difference in metabolism and transcription between seeds experiencing space flight and ground seeds after morphological post ripening, this study utilized ginseng seeds experiencing space flight and ground seeds as materials. Metabolomics and transcriptomics analyses were conducted using ultra-high performance liquid chromatography-mass spectrometry(UPLC-MS) and high-throughput transcriptome sequencing(RNA-seq) technologies, so as to identify differential terpenoid metabolites, differential endogenous hormones, and differentially expressed genes. The results showed that through metabolomics analysis, a total of 22 differential terpenoid metabolites were identified in the experimental and control groups, including chikusetsusaponin FK_7, ginsenoside F_2, ginseno-side K, majoroside R_1, ginsenoside Re_5, 12-hydroxyabietic acid, etc; through transcriptomics analysis, 15 differential terpenoid metabolism-related differentially expressed genes were identified in the experimental and control groups, including FCase, AACT, PMK, etc, and these genes were integrated into the pathway based on the MEP and MVA.

View Article and Find Full Text PDF

The aviation industry's growing interest in renewable jet fuel has encouraged the exploration of alternative oilseed crops. Replacing traditional fossil fuels with a sustainable, domestically sourced crop can substantially reduce carbon emissions, thus mitigating global climate instability. Pennycress (Thlaspi arvense L.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is a severe inflammatory disorder associated with metabolic reprogramming and mitochondrial dysfunction. This study investigated central carbon metabolism alterations in pancreatic acinar cells during AP, elucidated the molecular mechanisms of tricarboxylic acid (TCA) cycle disorders, and explored the role of protein hypersuccinylation in AP pathogenesis. Using in vitro and in vivo AP models, targeted metabolomics and bioinformatics analyses revealed TCA cycle dysregulation characterized by elevated succinyl-CoA and decreased succinate levels.

View Article and Find Full Text PDF

To reduce carbon emissions and address environmental concerns, the aviation industry is exploring the use of sustainable aviation fuel (SAF) as an alternative to traditional fossil fuels. In this context, bio-alkane is considered a potentially high-value solution. The present study focuses on the enzymes acyl-acyl carrier protein [ACP] reductase (AAR) and aldehyde-deformylating oxygenase (ADO), which are crucial enzymes for alka(e)ne biosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!