The food industry holds immense promise for 3D printing technology. Current research focuses mainly on optimizing food material composition, molding characteristics, and printing parameters. However, there is a notable lack of comprehensive studies on the shape changes of food products, especially in modeling and simulating deformations. This study addresses this gap by conducting a detailed simulation of the starch gel printing and deformation process using COMSOL Multiphysics 6.2 software. Additive manufacturing (AM) technology is widely acclaimed for its user-friendly operation and cost-effectiveness. The 3D printing process may lead to changes in part dimensions and mechanical properties, attributable to the accumulation of residual stresses. Studies require a significant amount of time and effort to discover the optimal composition of the printed material and the most effective deformed 3D structure. There is a risk of failure, which can lead to wasted resources and research delays. To tackle this issue, this study thoroughly analyzes the physical properties of the gel material through COMSOL Multiphysics 6.2 software, It simulates the heat distribution during the 3D printing process, providing important insights into how materials melt and solidify. Three-part models with varying aspect ratios were meticulously designed to explore shape changes during both the printing process and exposure to an 80 °C environment, employing NMR and rheological characterization. Using the generalized Maxwell model for material simulation in COMSOL Multiphysics, the study predicted stress and deformation of the parts by analyzing solid heat transfer and solid mechanics physical fields. Simulation results showed that among three models utilizing a gel-PET plastic membrane bilayer structure, Model No. 1, with the largest aspect ratio, exhibited the most favorable deformation under an 80 °C baking environment. It displayed uniform bending in the transverse direction without significant excess warpage in the edge direction. In contrast, Models No. 2 and No. 3 showed varying degrees of excess warpage at the edges, with Model No. 3 exhibiting a more pronounced warpage. These findings closely aligned with the actual printing outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969484 | PMC |
http://dx.doi.org/10.3390/foods13060881 | DOI Listing |
Sensors (Basel)
January 2025
Airworthiness Division, Air Force Institute of Technology, 01-494 Warsaw, Poland.
The range of sensor technologies for structural health monitoring (SHM) systems is expanding as the need for ongoing structural monitoring increases. In such a case, damage to the monitored structure elements is detected using an integrated network of sensors operating in real-time or periodically in frequent time stamps. This paper briefly introduces a new type of sensor, called a Customized Crack Propagation Sensor (CCPS), which is an alternative for crack gauges, but with enhanced functional features and customizability.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Astronautical, Electrical and Energy Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy.
The propagation of interface acoustic waves (IAWs) in 128° YX-LiNbO/SU-8/overcoat structures was theoretically studied and experimentally investigated for different types of overcoat materials and thicknesses of the SU-8 adhesive layer. Three-dimensional finite element method analysis was performed using Comsol Multiphysics software to design an optimized multilayer configuration able to achieve an efficient guiding effect of the IAW at the LiNbO/overcoat interface. Numerical analysis results showed the following: (i) an overcoat faster than the piezoelectric half-space ensures that the wave propagation is confined mainly close to the surface of the LiNbO, although with minimal scattering in the overcoat; (ii) the presence of the SU-8, in addition to performing the essential function of an adhesive layer, can also promote the trapping of the acoustic energy toward the surface of the piezoelectric substrate; and (iii) the electromechanical coupling efficiency of the IAW is very close to that of the surface acoustic wave (SAW) along the bare LiNbO half-space.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.
Gallium nitride (GaN) exhibits distinctive physical and chemical properties that render it indispensable in a multitude of electronic and optoelectronic devices. Given that GaN is a typical hard and brittle material that is difficult to machine, femtosecond laser technology provides an effective and convenient tool for processing such materials. However, GaN undergoes complex physical and chemical changes during high-power ablation, which poses a challenge to high-precision processing with controllable geometry.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Faculty of Mechanical Engineering and Design, Kaunas University of Technology, 51424 Kaunas, Lithuania.
In recent years, microfluidics has emerged as an interdisciplinary field, receiving significant attention across various biomedical applications. Achieving a noticeable mixing of biofluids and biochemicals at laminar flow conditions is essential in numerous microfluidics systems. In this research work, a new kind of micromixer design integrated with an Archimedes screw is designed and investigated using numerical simulation and experimental approaches.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
College of Naval Architecture and Shipping, Guangdong Ocean University, Zhanjiang 524088, China.
In recent years, liquid-solid triboelectric nanogenerators (L-S TENGs) have been rapidly developed in the field of liquid energy harvesting and self-powered sensing. This is due to a number of advantages inherent in the technology, including the low cost of fabricated materials, structural diversity, high charge-energy conversion efficiency, environmental friendliness, and a wide range of applications. As liquid phase dielectric materials typically used in L-S TENG, a variety of organic and inorganic single-phase liquids, including distilled water, acidic solutions, sodium chloride solutions, acetone, dimethyl sulfoxide, and acetonitrile, as well as paraffinic oils, have been used in experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!