The quality of food is influenced by several factors during production and storage. When using marker compounds, different steps in the production chain, as well as during storage, can be monitored. This might enable an optimum prediction of food's shelf life and avoid food waste. Especially, proteoforms and peptides thereof can serve as indicators for exogenous influences. The development of a proteomics-based workflow for detecting and identifying differences in the proteome is complex and time-consuming. The aim of the study was to develop a fast and universal workflow with ultra-high temperature (UHT) milk as a proteinaceous model food with expectable changes in protein/peptide composition. To find an optimum shelf life without sticking to a theoretically fixed best-before date, new evaluation and analytical methods are needed. Consequently, a modeling approach was used to monitor the shelf life of the milk after it was treated thermally and stored. The different peptide profiles determined with high-resolution mass spectrometry (HRMS) showed a significant difference depending on the preparation method of the samples. Potential marker peptides were determined using orthogonal projections to latent structures discriminant analysis (OPLSDA) and principal component analysis (PCA) following a typical proteomics protocol with tryptic hydrolysis. An additional Python-based algorithm enabled the identification of eight potential tryptic marker peptides (with mass spectrometric structural indications / 885.4843, / 639.3500, / 635.8622, / 634.3570, / 412.7191, / 623.2967, / 880.4767, and / 692.4041), indicating the effect of the heat treatment. The developed workflow is flexible and can be easily adapted to different research questions in the field of peptide analysis. In particular, the process of feature identification can be carried out with significantly less effort than with conventional methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969003 | PMC |
http://dx.doi.org/10.3390/foods13060831 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA.
Biopharmaceuticals are the fastest-growing class of drugs in the healthcare industry, but their global reach is severely limited by their propensity for rapid aggregation. Currently, surfactant excipients such as polysorbates and poloxamers are used to prevent protein aggregation, which significantly extends shelf-life. Unfortunately, these excipients are themselves unstable, oxidizing rapidly into 100s of distinct compounds, some of which cause severe adverse events in patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
About 50% of all cancers carry a mutation in p53 that impairs its tumor suppressor function. The p53 missense mutation p53 (p53 in mice) is a hotspot mutation in various cancer types. Therefore, monoclonal antibodies selectively targeting clinically relevant mutations like p53 could prove immensely value.
View Article and Find Full Text PDFSci Rep
January 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt.
In recent times, a truly exquisite pharmaceutical marvel has graced the world of medicine, known as Safinamide (SAF). This opulent creation has been specifically tailored to cater to the needs of individuals afflicted with Parkinson's disease (PD), an esteemed neurological condition renowned for its regal ability to impede motor skills, coordination, and equilibrium. It is highly improbable that degradation products of pharmaceutical components would significantly compromise efficiency and safety of a drug during its shelf life.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
Personalized neoantigen cancer mRNA vaccines are promising candidates for precision medicine. However, the difficulty of identifying neoantigens heavily hinders their broad applicability. This study developed a universal strategy of anti-tumor mRNA vaccine by harnessing "off-the-shelf" immunity to known antigens.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!