Gene Expression Analysis for Uterine Cervix and Corpus Cancer Characterization.

Genes (Basel)

Department of Computer Engineering, Automatics and Robotics, C.I.T.I.C., University of Granada, Periodista Rafael Gómez Montero, 2, 18014 Granada, Spain.

Published: February 2024

AI Article Synopsis

  • * A three-gene signature was found to classify different types of uterine cancer with 100% accuracy, while a two-gene miRNA signature showed strong potential in regulating these genes with an 82% performance score.
  • * The research also identified a unique gene signature for cervical adenocarcinoma and suggested that mixed cervical cancer samples may need to be re-evaluated based on expression patterns, enhancing insights into cancer diagnosis and treatment.

Article Abstract

The analysis of gene expression quantification data is a powerful and widely used approach in cancer research. This work provides new insights into the transcriptomic changes that occur in healthy uterine tissue compared to those in cancerous tissues and explores the differences associated with uterine cancer localizations and histological subtypes. To achieve this, RNA-Seq data from the TCGA database were preprocessed and analyzed using the KnowSeq package. Firstly, a kNN model was applied to classify uterine cervix cancer, uterine corpus cancer, and healthy uterine samples. Through variable selection, a three-gene signature was identified (, , ), achieving consistent 100% test accuracy across 20 repetitions of a 5-fold cross-validation. A supplementary similar analysis using miRNA-Seq data from the same samples identified an optimal two-gene miRNA-coding signature potentially regulating the three-gene signature previously mentioned, which attained optimal classification performance with an 82% F1-macro score. Subsequently, a kNN model was implemented for the classification of cervical cancer samples into their two main histological subtypes (adenocarcinoma and squamous cell carcinoma). A uni-gene signature () was identified, achieving 100% test accuracy through 20 repetitions of a 5-fold cross-validation and externally validated through the CGCI program. Finally, an examination of six cervical adenosquamous carcinoma (mixed) samples revealed a pattern where the gene expression value in the mixed class aligned closer to the histological subtype with lower expression, prompting a reconsideration of the diagnosis for these mixed samples. In summary, this study provides valuable insights into the molecular mechanisms of uterine cervix and corpus cancers. The newly identified gene signatures demonstrate robust predictive capabilities, guiding future research in cancer diagnosis and treatment methodologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970626PMC
http://dx.doi.org/10.3390/genes15030312DOI Listing

Publication Analysis

Top Keywords

gene expression
12
uterine cervix
12
cervix corpus
8
corpus cancer
8
healthy uterine
8
histological subtypes
8
knn model
8
three-gene signature
8
signature identified
8
identified achieving
8

Similar Publications

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!