AI Article Synopsis

Article Abstract

Alzheimer's disease is a neurodegeneration with protein deposits, altered proteolysis, and inflammatory and oxidative processes as major hallmarks. Despite the continuous search for potential therapeutic treatments, no cure is available to date. The use of natural molecules as adjuvants in the treatment of Alzheimer's disease is a very promising strategy. In this regard, ginsenosides from ginseng root show a variety of biological effects. Here, we dissected the role of ginsenosides Rg1 and Rg2 in modulating autophagy and oxidative stress in neuroblastoma cells overexpressing Aβ(1-42). Key hallmarks of these cellular processes were detected through immunomethods and fluorometric assays. Our findings indicate that ginsenosides are able to upregulate autophagy in neuronal cells as demonstrated by increased levels of LC3II and Beclin-1 proteins and decreased amounts of p62. Simultaneously, an activation of lysosomal hydrolases was observed. Furthermore, autophagy activation promoted the clearance of Aβ(1-42). Rg1 and Rg2 also reduced oxidative stress sources and macromolecule oxidation, promoting NRF2 nuclear translocation and the expression of antioxidant enzymes. Our data further clarify the mechanisms of action of Rg1 and Rg2, indicating new insights into their role in the management of disorders like Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10967604PMC
http://dx.doi.org/10.3390/antiox13030310DOI Listing

Publication Analysis

Top Keywords

rg1 rg2
16
oxidative stress
12
alzheimer's disease
12
ginsenosides rg1
8
stress neuroblastoma
8
neuroblastoma cells
8
cells overexpressing
8
overexpressing aβ1-42
8
ginsenosides
4
rg2
4

Similar Publications

Panax notoginseng (P. notoginseng) is one of the most famous natural medicines and widely used to promote blood circulation in health care. However, the active component group of P.

View Article and Find Full Text PDF

The roots of Panax ginseng C. A. Meyer (ginseng) are one of the traditional medicinal herbs in Asian countries and is known as the "king of all herbs".

View Article and Find Full Text PDF

Triol-type ginsenoside Re (GS-Re) exhibits potent anti-myocardial ischemia-reperfusion effects, but its clinical use is hindered by poor bioavailability. This study evaluates the impact of β-cyclodextrin (β-CD) inclusion on GS-Re bioavailability and tissue dynamics in rat models. The GS-Re-β-CD complex was prepared using aqueous stirring and characterized.

View Article and Find Full Text PDF
Article Synopsis
  • Panax ginseng, a commonly used herbal medicine in Asia, relies on its roots and rhizomes, which contain ginsenosides, the main active compounds that enhance its adaptability to ecological stress.
  • A study involved applying water spray to create a short-term water stress scenario for 5-year-old P. ginseng roots, revealing significant increases in oxidative stress indicators and enzyme activities linked to ginsenoside production.
  • The water stress treatment resulted in notable boosts in various ginsenosides (e.g., Rg1 and Rb1) and a 40.1% increase in total saponins, highlighting the potential for water management to enhance the medicinal properties of P. ginseng.
View Article and Find Full Text PDF
Article Synopsis
  • Aging leads to the decline of cells and is a risk factor for chronic diseases, with traditional Chinese medicine (TCM) potentially offering unique benefits, though the complexity of TCM metabolites complicates pharmacological screening.
  • A novel method using UPLC-Q Exactive-Orbitrap HRMS was developed to thoroughly identify the chemical makeup of Huan Shao Dan (HSD) and its metabolites, with a focus on their metabolic pathways.
  • The study successfully identified 366 metabolites and highlighted five promising anti-aging metabolites (ginsenoside Rg1, Rg2, Rc, pseudoginsenoside F11, and jionoside B1) through deep learning and bioactivity assessments, paving the way for future TCM research.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!