Ellis is abundant in crocin and has a longstanding historical usage both as a dietary and natural ethnic medicine. Enhanced studies have increasingly revealed the intricate interplay between glycolipid metabolism and gut microbiota, wherein their imbalance is regarded as a pivotal indicator of metabolic disorders. Currently, the precise molecular mechanism of the crude extract of crocin from Ellis (GC) targeting gut microbiota to regulate glycolipid metabolism disorder is still unclear. Firstly, we explored the effect of GC on digestive enzymes (α-amylase and α-glucosidase) in vitro. Secondly, we investigated the effect of GC on the physical and chemical parameters of high-fat diet (HFD) rats, such as body weight change, fasting blood glucose and lipid levels, and liver oxidative stress and injury. Then, 16S rDNA sequencing was used to analyze the effects of GC on the composition and structure of gut microbiota. Finally, the impact of GC on the TLR4/Myd88/NF-κB signaling pathway in the intestine was assessed by Western Blotting. In the present study, GC was found to exhibit a hypoglycemic effect in vitro, by inhibition of digestive enzymes. In animal experiments, we observed that GC significantly reduced fasting blood glucose, TC, and TG levels while increasing HDL-C levels. Additionally, GC demonstrated hepatoprotective properties by enhancing liver antioxidative capacity through the upregulation of SOD, CAT, and GSH-Px, while reducing ROS. 16S rDNA sequencing results showed that GC had a significant effect on the gut microbiota of HFD rats, mainly by reducing the ratio of /, and significantly affected the genera related to glycolipid metabolism, such as , , , , , etc. The Western Blotting results demonstrated that GC effectively downregulated the protein expressions of TLR4, Myd88, and NF-κB in the intestine of HFD rats, indicating that GC could target the TLR4/Myd88/NF-κB pathway to interfere with glycolipid metabolism disorder. Correlation analysis revealed that GC could target the -TLR4/Myd88/NF-κB pathway axis which attenuates glycolipid metabolism disorder. Therefore, this study establishes the foundation for GC as a novel therapeutic agent for glycolipid metabolism disorder chemoprevention, and it introduces a novel methodology for harnessing the potential of natural botanical extracts in the prevention and treatment of metabolic syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10967366 | PMC |
http://dx.doi.org/10.3390/antiox13030293 | DOI Listing |
J Chromatogr B Analyt Technol Biomed Life Sci
December 2024
The College of Life Sciences, Northwest University, Xi'an, China. Electronic address:
Zhi Bai Heye Fang (AR-PCC-NF) exerts a positive effect on glycolipid metabolic disorders in the clinical setting; however, its efficacy components and mechanisms of action remain unclear. Glycolipid metabolic disorders in mice were used to evaluate the therapeutic effects of AR-PCC-NF and its individual components, and the chemical components of AR-PCC-NF were detected by HPLC. An insulin-resistant cell model was then treated with 12 biological components in vitro, and seven candidate active components were administered to mice with glycolipid metabolic disorders to investigate the efficacy and mechanism of AR-PCC-NF.
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China. Electronic address:
Oleanolic acid (OA) is a food-derived bioactive component with antidiabetic activity, but its water solubility and oral bioavailability are notably restricted. In this study, to overcome these limitations, ursodeoxycholic acid-modified chitosan oligosaccharide (UCOS) was synthesized to encapsulate OA in self-assembled nanomicelles (UCOS-OA). The encapsulation efficiency and drug loading of UCOS-OA were 86 % and 11 %, respectively.
View Article and Find Full Text PDFPLoS One
January 2025
BioMarin Pharmaceutical Inc., Novato, CA, United States of America.
The GM2 gangliosidoses, Tay-Sachs disease and Sandhoff disease, are devastating neurodegenerative disorders caused by β-hexosaminidase A (HexA) deficiency. In the Sandhoff disease mouse model, rescue potential was severely reduced when HexA was introduced after disease onset. Here, we assess the effect of recombinant HexA and HexD3, a newly engineered mimetic of HexA optimized for the treatment of Tay-Sachs disease and Sandhoff disease.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Utah, Salt Lake City, UT, USA.
Background: Neurodegenerative disorders such as Alzheimer's Disease (AD) are increasingly associated with irregular lipid accumulation. Dysfunction in the catabolism of sphingolipids leads to many neurodegenerative disorders but has only recently garnered interest in AD. Excess ceramide deposition has been observed in Aβ-plaques, plasma, and cerebrospinal fluid in AD patients and AD mouse models.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
German Center for Neurodegenerative Diseases (DZNE), Bonn, NRW, Germany; Institute of Innate Immunity, Bonn, NRW, Germany.
Background: Western-diet (WD) can induce sterile inflammation and epigenetic reprogramming of myeloid cells, affecting their immune response (Christ et al., 2018). However, the molecular signaling mediating these changes was unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!