The rapid development of cryptocurrencies has led to an increasing severity of money laundering activities. In recent years, leveraging graph neural networks for cryptocurrency fraud detection has yielded promising results. However, many existing methods predominantly focus on node classification, i.e., detecting individual illicit transactions, rather than uncovering behavioral pattern differences among money laundering groups. In this paper, we tackle the challenges presented by the organized, heterogeneous, and noisy nature of Bitcoin money laundering. We propose a novel subgraph-based contrastive learning algorithm for heterogeneous graphs, named Bit-CHetG, to perform money laundering group detection. Specifically, we employ predefined metapaths to construct the homogeneous subgraphs of wallet addresses and transaction records from the address-transaction heterogeneous graph, enhancing our ability to capture heterogeneity. Subsequently, we utilize graph neural networks to separately extract the topological embedding representations of transaction subgraphs and associated address representations of transaction nodes. Lastly, supervised contrastive learning is introduced to reduce the effect of noise, which pulls together the transaction subgraphs with the same class while pushing apart the subgraphs with different classes. By conducting experiments on two real-world datasets with homogeneous and heterogeneous graphs, the Micro F1 Score of our proposed Bit-CHetG is improved by at least 5% compared to others.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969714 | PMC |
http://dx.doi.org/10.3390/e26030211 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!