AI Article Synopsis

  • Lewy body disease (LBD) is involved in various neurodegenerative syndromes, and the αSyn-SAA assay shows excellent sensitivity and specificity for diagnosing cortical LBD cases.
  • However, the assay has lower sensitivity in amygdala-predominant and brainstem-predominant LBD cases, though positive results may indicate early disease progression.
  • Overall, the αSyn-SAA assay offers precise diagnosis of LBD and may help identify co-pathologies, which could influence treatment outcomes and aid in clinical trials.

Article Abstract

Introduction: Lewy body disease (LBD) is a common primary or co-pathology in neurodegenerative syndromes. An alpha-synuclein seed amplification assay (αSyn-SAA) is clinically available, but clinical performance, especially lower sensitivity in amygdala-predominant cases, is not well understood.

Methods: Antemortem CSF from neuropathology-confirmed LBD cases was tested with αSyn-SAA (N = 56). Diagnostic performance and clinicopathological correlations were examined.

Results: Similar to prior reports, sensitivity was 100% for diffuse and transitional LBD (9/9), and overall specificity was 96.3% (26/27). Sensitivity was lower in amygdala-predominant (6/14, 42.8%) and brainstem-predominant LBD (1/6, 16.7%), but early spread outside these regions (without meeting criteria for higher stage) was more common in αSyn-SAA-positive cases (6/7, 85.7%) than negative (2/13, 15.4%).

Discussion: In this behavioral neurology cohort, αSyn-SAA had excellent diagnostic performance for cortical LBD. In amygdala- and brainstem-predominant cases, sensitivity was lower, but positivity was associated with anatomical spread, suggesting αSyn-SAA detects early LBD progression in these cohorts.

Highlights: A cerebrospinal fluid alpha-synuclein assay detects cortical LBD with high sensitivity/specificity. Positivity in prodromal stages of LBD was associated with early cortical spread. The assay provides precision diagnosis of LBD that could support clinical trials. The assay can also identify LBD co-pathology, which may impact treatment responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095442PMC
http://dx.doi.org/10.1002/alz.13799DOI Listing

Publication Analysis

Top Keywords

lbd
10
cerebrospinal fluid
8
fluid alpha-synuclein
8
alpha-synuclein seed
8
seed amplification
8
amplification assay
8
behavioral neurology
8
diagnostic performance
8
sensitivity lower
8
cortical lbd
8

Similar Publications

Neuropsychological test performance in mild cognitive impairment with Lewy bodies: A systematic review and meta-analysis.

Alzheimers Dement

January 2025

Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden.

Background: We sought to characterize the cognitive profile among individuals with mild cognitive impairment with Lewy bodies (MCI-LB) to help guide future clinical criteria.

Methods: Systematic review and meta-analysis included MCI-LB studies with cognitive data from PubMed, Embase, Web of Science, and PsycINFO (January 1990 to March 2023). MCI-LB scores were compared to controls, MCI due to Alzheimer's disease (MCI-AD), and dementia with Lewy bodies (DLB) groups with random-effects models.

View Article and Find Full Text PDF

Mild behavioral impairment in idiopathic REM sleep behavior disorder and Lewy body disease continuum.

J Neural Transm (Vienna)

January 2025

Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University of College of Medicine, Seoul, Republic of Korea.

To investigate the clinical impact of mild behavioral impairment (MBI) in a predefined cohort with Lewy body disease (LBD) continuum. Eighty-four patients in the LBD continuum participated in this study, including 35 patients with video-polysomnography-confirmed idiopathic REM sleep behavior disorder (iRBD) and 49 clinically established LBD. Evaluations included the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), neuropsychological tests, and MBI Checklist (MBI-C).

View Article and Find Full Text PDF

Bichromatic Splicing Detector Allows Quantification of and Splicing Isoforms in Single Cells by Fluorescent Live-Cell Imaging.

Int J Mol Sci

December 2024

Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.

Thyroid hormone receptor alpha (THR) is a nuclear hormone receptor that binds triiodothyronine (T3) and acts as an important transcription factor in development, metabolism, and reproduction. The coding gene, , has two major splicing isoforms in mammals, and , which encode THR1 and THR1, respectively. The better characterized isoform, THR1, is a transcriptional stimulator of genes involved in cell metabolism and growth.

View Article and Find Full Text PDF

Breaking Left-Right Symmetry by the Interplay of Planar Cell Polarity, Calcium Signaling and Cilia.

Cells

December 2024

Laboratoire de Biologie du Développement, LBD, CNRS UMR7622, INSERM U1156, Sorbonne Université, F-75005 Paris, France.

The formation of the embryonic left-right axis is a fundamental process in animals, which subsequently conditions both the shape and the correct positioning of internal organs. During vertebrate early development, a transient structure, known as the left-right organizer, breaks the bilateral symmetry in a manner that is critically dependent on the activity of motile and immotile cilia or asymmetric cell migration. Extensive studies have partially elucidated the molecular pathways that initiate left-right asymmetric patterning and morphogenesis.

View Article and Find Full Text PDF

It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!