Exotic physics could emerge from interplay between geometry and correlation. In fractional quantum Hall (FQH) states, novel collective excitations called chiral graviton modes (CGMs) are proposed as quanta of fluctuations of an internal quantum metric under a quantum geometry description. Such modes are condensed-matter analogues of gravitons that are hypothetical spin-2 bosons. They are characterized by polarized states with chirality of +2 or -2, and energy gaps coinciding with the fundamental neutral collective excitations (namely, magnetorotons) in the long-wavelength limit. However, CGMs remain experimentally inaccessible. Here we observe chiral spin-2 long-wavelength magnetorotons using inelastic scattering of circularly polarized lights, providing strong evidence for CGMs in FQH liquids. At filling factor v = 1/3, a gapped mode identified as the long-wavelength magnetoroton emerges under a specific polarization scheme corresponding to angular momentum S = -2, which persists at extremely long wavelength. Remarkably, the mode chirality remains -2 at v = 2/5 but becomes the opposite at v = 2/3 and 3/5. The modes have characteristic energies and sharp peaks with marked temperature and filling-factor dependence, corroborating the assignment of long-wavelength magnetorotons. The observations capture the essentials of CGMs and support the FQH geometrical description, paving the way to unveil rich physics of quantum metric effects in topological correlated systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-024-07201-w | DOI Listing |
Phys Rev Lett
December 2024
Department of Physics, 104 Davey Lab, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
A fundamental manifestation of the nontrivial correlations of an incompressible fractional quantum Hall (FQH) state is that an electron added to it disintegrates into more elementary particles, namely fractionally-charged composite fermions (CFs). We show here that the Girvin-MacDonald-Platzman (GMP) density-wave excitation of the ν=n/(2pn±1) FQH states also splits into more elementary single CF excitons. In particular, the GMP graviton, which refers to the recently observed spin-2 neutral excitation in the vanishing wave vector limit [Liang et al.
View Article and Find Full Text PDFInnovation (Camb)
July 2024
Physics Department, Florida State University, Tallahassee, FL 32306, USA.
Nature
April 2024
Department of Physics, Columbia University, New York, NY, USA.
Exotic physics could emerge from interplay between geometry and correlation. In fractional quantum Hall (FQH) states, novel collective excitations called chiral graviton modes (CGMs) are proposed as quanta of fluctuations of an internal quantum metric under a quantum geometry description. Such modes are condensed-matter analogues of gravitons that are hypothetical spin-2 bosons.
View Article and Find Full Text PDFPhys Rev Lett
December 2022
Service de Physique de l'Univers, Champs et Gravitation, Université de Mons, 20 place du Parc, 7000 Mons, Belgium.
We propose a new, chiral description for massive higher-spin particles in four spacetime dimensions, which facilitates the introduction of consistent interactions. As proof of concept, we formulate three theories, in which higher-spin matter is coupled to electrodynamics, non-Abelian gauge theory, or gravity. The theories are chiral and have simple Lagrangians, resulting in Feynman rules analogous to those of massive scalars.
View Article and Find Full Text PDFPhys Rev Lett
June 2022
NHMFL and Department of Physics, Florida State University, Tallahassee, Florida 32306, USA.
We study, numerically, the charge neutral excitations (magnetorotons) in fractional quantum Hall systems, concentrating on the two Jain states near quarter filling, ν=2/7 and ν=2/9, and the ν=1/4 Fermi-liquid state itself. In contrast to the ν=1/3 states and the Jain states near half filling, on each of the two Jain states ν=2/7 and ν=2/9 the graviton spectral densities show two, instead of one, magnetoroton peaks. The magnetorotons have spin 2 and have opposite chiralities in the ν=2/7 state and the same chirality in the ν=2/9 state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!