A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring super-resolution spatial downscaling of several meteorological variables and potential applications for photovoltaic power. | LitMetric

We applied a perfect prognosis approach to downscale four meteorological variables that affect photovoltaic (PV) power output using four machine learning (ML) algorithms. In addition to commonly investigated variables, such as air temperature and precipitation, we also focused on wind speed and surface solar radiation, which are not frequently examined. The downscaling performance of the four variables followed the order of: temperature > surface solar radiation > wind speed > precipitation. Having assessed the dependence of the downscaling accuracy on the scaling factor, we focused on a super-resolution downscaling. We found that the convolutional neural network (CNN) generally outperformed the other linear and non-linear algorithms. The CNN was further able to reproduce extremes. With the rapid transition from coal to renewables, the need to evaluate low solar output conditions at a regional scale is expected to benefit from CNNs. Because weather affects PV power output in multiple ways, and future climate change will modify meteorological conditions, we focused on obtaining exemplary super-resolution application by evaluating future changes in PV power outputs using climate simulations. Our results confirmed the reliability of the CNN method for producing super-resolution climate scenarios and will enable energy planners to anticipate the effects of future weather variability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973502PMC
http://dx.doi.org/10.1038/s41598-024-57759-8DOI Listing

Publication Analysis

Top Keywords

meteorological variables
8
photovoltaic power
8
power output
8
exploring super-resolution
4
super-resolution spatial
4
downscaling
4
spatial downscaling
4
downscaling meteorological
4
variables
4
variables potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!