A more detailed understanding of the mechanisms underlying the formation of microbial communities is essential for the efficient management of microbial ecosystems. The stable states of microbial communities are commonly perceived as static and, thus, have not been extensively examined. The present study investigated stabilizing mechanisms, minority functions, and the reliability of quantitative ana-lyses, emphasizing a metabolic network perspective. A bacterial community, formed by batch transferred cultures supplied with phenol as the sole carbon and energy source and paddy soil as the inoculum, was analyzed using a principal coordinate ana-lysis (PCoA), mathematical models, and quantitative parameters defined as growth activity, community-changing activity, community-forming activity, vulnerable force, and resilience force depending on changes in the abundance of operational taxonomic units (OTUs) using 16S rRNA gene amplicon sequences. PCoA showed succession states until the 3 transferred cultures and stable states from the 5 to 10 transferred cultures. Quantitative parameters indicated that the bacterial community was dynamic irrespective of the succession and stable states. Three activities fluctuated under stable states. Vulnerable and resilience forces were detected under the succession and stable states, respectively. Mathematical models indicated the construction of metabolic networks, suggesting the stabilizing mechanism of the community structure. Thirteen OTUs coexisted during stable states, and were recognized as core OTUs consisting of majorities, middle-class, and minorities. The abundance of the middle-class changed, whereas that of the others did not, which indicated that core OTUs maintained metabolic networks. Some extremely low abundance OTUs were consistently exchanged, suggesting a role for scavengers. These results indicate that stable states were formed by dynamic metabolic networks with members functioning to achieve robustness and plasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982111PMC
http://dx.doi.org/10.1264/jsme2.ME23091DOI Listing

Publication Analysis

Top Keywords

stable states
32
metabolic networks
16
transferred cultures
12
stable
8
states microbial
8
community formed
8
formed dynamic
8
dynamic metabolic
8
networks members
8
members functioning
8

Similar Publications

Biopharmaceuticals are the fastest-growing class of drugs in the healthcare industry, but their global reach is severely limited by their propensity for rapid aggregation. Currently, surfactant excipients such as polysorbates and poloxamers are used to prevent protein aggregation, which significantly extends shelf-life. Unfortunately, these excipients are themselves unstable, oxidizing rapidly into 100s of distinct compounds, some of which cause severe adverse events in patients.

View Article and Find Full Text PDF

Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.

View Article and Find Full Text PDF

Adsorption Structure and Selectivity of Phenols in Water-Immersed Organomontmorillonite Investigated by Molecular Simulation.

Langmuir

January 2025

Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Tokyo, Hachioji 192-0015, Japan.

The two-dimensional interlayer space of layered materials has been highlighted due to their adsorption property, whose nanostructure in the water-immersed state is scarcely understood by experiment. Recent developments in molecular simulation have enabled researchers to investigate the interlayer structure, but water content is necessary for accurate modeling. In the present study, we proposed a theoretical method to estimate the saturated water content and adsorption selectivity of trichlorophenol and phenol in montmorillonite modified with hexadecyltrimethylammonium ions.

View Article and Find Full Text PDF

The COVID-19 pandemic in Singapore led to limited access to mental health services, resulting in increased distress among the population. This study explores the potential benefits of offering a digital mental health intervention (DMHI), Wysa, as a brief and longitudinal intervention as part of the mindline.sg initiative launched by the MOH Office for Healthcare Transformation in Singapore.

View Article and Find Full Text PDF

Recent studies indicate that the development of drug resistance and increased invasiveness in melanoma is largely driven by transcriptional plasticity rather than canonical coding mutations. Understanding the mechanisms behind cell identity shifts in oncogenic transformation and cancer progression is crucial for advancing our understanding of melanoma and other aggressive cancers. While distinct melanoma phenotypic states have been well characterized, the processes and transcriptional controls that enable cells to shift between these states remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!