Physical exercise confers numerous benefits to brain structure, function and cognition, however, considerable individual variability exists in these effects. Emerging paradigms focused on intraindividual dynamics provide novel opportunities to map and leverage individualized neural architectures underlying exercise-cognition relationships. Progress at the intersection of psychometrics, structural and functional neuroimaging, electrophysiology, and genetics can be integrated to elucidate each individual's potential for improvement, as well as the specific abilities that are most likely to benefit from exercise regimens. These personalized profiles can then guide targeted exercise programs tailored to effectively modulate the pathways identified as most promising for that individual. Such mapping-guided exercise interventions tailored to a person's neurocognitive profile allows optimizing cognitive improvements compared to results elicited by generic regimens. While still in its infancy, precision interventions represent an innovative future direction to advance exercise in support of brain health, toward potent, truly personalized cognitive enhancement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.pbr.2023.12.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!