A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards the adoption of quantitative computed tomography in the management of interstitial lung disease. | LitMetric

The shortcomings of qualitative visual assessment have led to the development of computer-based tools to characterise and quantify disease on high-resolution computed tomography (HRCT) in patients with interstitial lung diseases (ILDs). Quantitative CT (QCT) software enables quantification of patterns on HRCT with results that are objective, reproducible, sensitive to change and predictive of disease progression. Applications developed to provide a diagnosis or pattern classification are mainly based on artificial intelligence. Deep learning, which identifies patterns in high-dimensional data and maps them to segmentations or outcomes, can be used to identify the imaging patterns that most accurately predict disease progression. Optimisation of QCT software will require the implementation of protocol standards to generate data of sufficient quality for use in computerised applications and the identification of diagnostic, imaging and physiological features that are robustly associated with mortality for use as anchors in the development of algorithms. Consortia such as the Open Source Imaging Consortium have a key role to play in the collation of imaging and clinical data that can be used to identify digital imaging biomarkers that inform diagnosis, prognosis and response to therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966471PMC
http://dx.doi.org/10.1183/16000617.0055-2023DOI Listing

Publication Analysis

Top Keywords

computed tomography
8
interstitial lung
8
qct software
8
disease progression
8
imaging
5
adoption quantitative
4
quantitative computed
4
tomography management
4
management interstitial
4
disease
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!