Exploring keystone taxa affecting microbial community stability and host function is crucial for understanding ecosystem functions. However, identifying keystone taxa from humongous microbial communities remains challenging. We collected 344 rhizosphere and bulk soil samples from the endangered plant C. migao for 2 years consecutively. Used high-throughput sequencing 16S rDNA and ITS to obtain the composition of bacterial and fungal communities. We explored keystone taxa and the applicability and limitations of five methods (SPEC-OCCU, Zi-Pi, Subnetwork, Betweenness, and Module), as well as the impact of microbial community domain, time series, and rhizosphere boundary on the identification of keystone taxa in the communities. Our results showed that the five methods, identified abundant keystone taxa in rhizosphere and bulk soil microbial communities. However, the keystone taxa shared by the rhizosphere and bulk soil microbial communities over time decreased rapidly decrease in the five methods. Among five methods on the identification of keystone taxa in the rhizosphere community, Module identified 113 taxa, SPEC-OCCU identified 17 taxa, Betweenness identified 3 taxa, Subnetwork identified 3 taxa, and Zi-Pi identified 4 taxa. The keystone taxa are mainly conditionally rare taxa, and their ecological functions include chemoheterotrophy, aerobic chemoheterotrophy, nitrate reduction, and anaerobic photoautotrophy. The results of the random forest model and structural equation model predict that keystone taxa Mortierella and Ellin6513 may have an effects on the accumulation of 1, 4, 7, - Cycloundecatriene, 1, 5, 9, 9-tetramethyl-, Z, Z, Z-, beta-copaene, bicyclogermacrene, 1,8-Cineole in C. migao fruits, but their effects still need further evidence. Our study evidence an unstable microbial community in the bulk soil, and the definition of microbial boundary and ecologically functional affected the identification of keystone taxa in the community. Subnetwork and Module are more in line with the definition of keystone taxa in microbial ecosystems in terms of maintaining community stability and hosting function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.171952DOI Listing

Publication Analysis

Top Keywords

keystone taxa
48
taxa
18
identification keystone
16
microbial communities
16
bulk soil
16
identified taxa
16
taxa rhizosphere
12
microbial community
12
rhizosphere bulk
12
keystone
11

Similar Publications

A novel immobilized bacteria consortium enhanced remediation efficiency of PAHs in soil: Insights into key removal mechanism and main driving factor.

J Hazard Mater

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

The remediation of sites co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) poses challenges for efficient and ecofriendly restoration methods. In this study, three strains (Pseudomonas sp. PDC-1, Rhodococcus sp.

View Article and Find Full Text PDF

Chemical fumigation can effectively inhibit the occurrence of soil-borne diseases; however, this approach can negatively affect the structure of the soil microbial community. The combination of soil fumigant and organic fertilizer application thus represents a widely adopted strategy in agricultural practice. Traditional Chinese medicine residue (TCMR) is a high-quality organic fertilizer; however, the impact of post-fumigation TCMR application on keystone taxa and their functional traits remains uncertain.

View Article and Find Full Text PDF

Sorghum rhizosphere bacteriome studies and generation of multistrain beneficial bacterial consortia.

Microbiol Res

December 2024

International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco. Electronic address:

The plant rhizosphere microbiome plays a crucial role in plant growth and health. Within this microbiome, bacteria dominate, exhibiting traits that benefit plants, such as facilitating nutrient acquisition, fixing nitrogen, controlling pathogens, and promoting root growth. This study focuses on designing synthetic bacterial consortia using key bacterial strains which have been mapped and then isolated from the sorghum rhizosphere microbiome.

View Article and Find Full Text PDF

Microbial Biotic Associations Dominated Adaptability Differences of Dioecious Poplar Under Salt Stress.

Plant Cell Environ

January 2025

Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.

How different stress responses by male and female plants are influenced by interactions with rhizosphere microbes remains unclear. In this study, we employed poplar as a dioecious model plant and quantified biotic associations between microorganisms to explore the relationship between microbial associations and plant adaptation. We propose a health index (HI) to comprehensively characterize the physiological characteristics and adaptive capacity of plants under stress.

View Article and Find Full Text PDF

Microorganisms underpin numerous ecosystem processes and support biodiversity globally. Yet, we understand surprisingly little about what structures environmental microbiomes, including how to efficiently identify key players. Microbiome network theory predicts that highly connected hubs act as keystones, but this has never been empirically tested in nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!