A significant and pressing issue revolves around the potential human exposure to endocrine disrupting chemicals (EDCs), which pose a substantial risk primarily through contaminated beverages. However, a comprehensive review for comparison of the migration rates of EDCs into these matrixes is currently lacking. This study reviews the beverages contamination with EDCs, including phthalates (PAEs), bisphenol A (BPA), hormone-like compounds, elements, and other organic EDCs. Also, the EDCs migration into milk and other dairy products, coffee, tea, and cold beverages related to their release from contact materials, preparation components, and storage conditions are briefly summarized. The data illustrates that besides the contamination of raw materials, the presence of EDCs associated with the type of food contact materials (FCMs)and their migration rate is increased with acidity, temperature, and storage time. The highest concentration of PAEs was detected from plastic and synthetic polymer films, while BPA strongly leaches from epoxy resins and canned metal. Furthermore, the presence of elements with endocrine disrupting characteristics was confirmed in cold beverages, soft drinks, hot drink and milk. Moreover, hormone-like compounds have been found to be released from coffee preparation components. Despite the few data about the migration rate of other EDCs including UV-stabilizers, surfactants, and antibacterial compounds into beverages, their presence was reported into milk, coffee, and different beverages, especially in packed samples. Studies on the EDCs leaching have primarily focused on PAEs and BPA, while other compounds require further investigation. Regardless, the possible risk that EDCs pose to humans through beverage consumption cannot be overlooked.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141760 | DOI Listing |
Mol Med
December 2024
Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Metabolic syndrome (MetS) is an indicator and diverse endocrine syndrome that combines different metabolic defects with clinical, physiological, biochemical, and metabolic factors. Obesity, visceral adiposity and abdominal obesity, dyslipidemia, insulin resistance (IR), elevated blood pressure, endothelial dysfunction, and acute or chronic inflammation are the risk factors associated with MetS. Abdominal obesity, a hallmark of MetS, highlights dysfunctional fat tissue and increased risk for cardiovascular disease and diabetes.
View Article and Find Full Text PDFSci Rep
December 2024
School of BioSciences, The University of Melbourne, Melbourne, 3010, Australia.
Diethylstilbestrol (DES) is an estrogenic endocrine disrupting chemical (EDC) that was prescribed to millions of pregnant women worldwide, leading to increased rates of infertility in the exposed offspring. We have previously demonstrated that this reduced fertility persists for multiple generations in the mouse. However, how altered ovarian function contributes to this infertility is unknown.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Urology, Osaka University Graduate School of Medicine, Suita, 565-0871, Osaka, Japan.
One in five couples who wish to conceive is infertile, and half of these couples have male infertility. However, the causes of male infertility are still largely unknown. Creatine is stored in the body as an energy buffer, and the testes are its second-largest reservoir after muscles.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Family and Community Medicine and Medical Education, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia.
Background: Congenital heart diseases are among the most common birth defects, significantly impacting infant health. Recent evidence suggests that exposure to endocrine-disrupting chemicals may contribute to the incidence of congenital heart diseases. This study systematically reviews and analyzes the association between maternal endocrine-disrupting chemicals exposure and congenital heart diseases.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia.
TCIPP (tris(1,3-dichloro-2-propyl) phosphate) and TCEP (tris(2-chloroethyl) phosphate) are organophosphate ester flame retardants found in various consumer products, posing significant health and environmental risks through inhalation, ingestion, and dermal exposure. Research reveals these compounds cause oxidative stress, inflammation, endocrine disruption, genotoxicity, neurotoxicity, and potentially hepatotoxicity, nephrotoxicity, cardiotoxicity, developmental, reproductive, and immunotoxicity. This review summarizes the current knowledge on the toxicological mechanisms of TCIPP and TCEP and presents the latest data on their toxicological effects obtained in vitro and in vivo, using omic systems, and on the basis of computational modelling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!