Two-dimensional (2D) semiconductors have recently attracted considerable attention due to their promising applications in future integrated electronic and optoelectronic devices. Large-scale synthesis of high-quality 2D semiconductors is an increasingly essential requirement for practical applications, such as sensing, imaging, and communications. In this work, homogeneous 2D GaTe films on a centimeter scale are epitaxially grown on fluorphlogopite mica substrates by molecular beam epitaxy (MBE). The epitaxial GaTe thin films showed an atomically 2D layered lattice structure with a T phase, which has not been discovered in the GaTe geometric isomer. Furthermore, semiconducting behavior and high mobility above room temperature were found in T-GaTe epitaxial films, which are essential for application in semiconducting devices. The T-GaTe-based photodetectors demonstrated respectable photodetection performance with a responsivity of 13 mA/W and a fast response speed. By introducing monolayer graphene as the substrate, we successfully realized high-quality GaTe/graphene heterostructures. The performance has been significantly improved, such as the responsivity was enhanced more than 20 times. These results highlight a feasible scheme for exploring the crystal phase of 2D GaTe and realizing the controlled growth of GaTe films on large substrates, which could promote the development of broadband, high-performance, and large-scale photodetection applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c00461 | DOI Listing |
Materials (Basel)
January 2025
CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.
Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA.
In this paper, we review our work on the manipulation of magnetization in ferromagnetic semiconductors (FMSs) using electric-current-induced spin-orbit torque (SOT). Our review focuses on FMS layers from the (Ga,Mn)As zinc-blende family grown by molecular beam epitaxy. We describe the processes used to obtain spin polarization of the current that is required to achieve SOT, and we briefly discuss methods of specimen preparation and of measuring the state of magnetization.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Brachytherapy, Saint John's Cancer Center, Lublin, Poland.
Background: The current standard of care (SoC) for patients with extensive-disease small-cell lung cancer (ED-SCLC) is chemo-immunotherapy. The efficacy of radiotherapy (RT) for chest consolidation has been established for patients with ED-SCLC who have responded to chemotherapy. There is a lack of data on incorporating RT as chest consolidation and metastasis-directed therapy for ED-SCLC.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Max Planck-EPFL Laboratory for Molecular Nanoscience, Institut de Physique de la Matière Condensée, École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland, 1005, Lausanne, SWITZERLAND.
Efficient catalytic water splitting demands advanced catalysts to improve the slow kinetics of the oxygen evolution reaction (OER). Earth-abundant transition metal oxides show promising OER activity in alkaline media. However, most experimental information available is either from post-mortem studies or in-situ space-averaged X-ray techniques in the micrometer range.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
Antimonide laser diodes, with their high performance above room temperature, exhibit significant potential for widespread applications in the mid-infrared spectral region. However, the laser's performance significantly degrades as the emission wavelength increases, primarily due to severe quantum-well hole leakage and significant non-radiative recombination. In this paper, we put up an active region with a high valence band offset and excellent crystalline quality with high luminescence to improve the laser's performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!