Purpose: To evaluate the feasibility of a free-breathing sequence (4D FreeBreathing) combined with Compressed SENSE in dynamic contrast-enhanced pancreatic MRI and compare it with a breath-holding sequence (eTHRIVE).

Method: Patients who underwent pancreatic MRI, either eTHRIVE or 4D FreeBreathing, from April 2022 to November 2023 were included in this retrospective study. Two radiologists, who were unaware of the scan sequence, independently and randomly reviewed the images at the precontrast, pancreatic, portal venous, and equilibrium phases and assigned confidence scores for motion and streaking artifacts, pancreatic sharpness, and overall image quality using a 5-point scale. Furthermore, the radiologists assessed the appropriateness of the scan timing of the pancreatic phase. Mann-Whitney U and Fisher's exact tests were conducted to compare the confidence scores and adequacy of the pancreatic phase scan timing between eTHRIVE and 4D FreeBreathing.

Results: Overall, 48 patients (median age, 71 years; interquartile range, 64-77 years; 24 women) were included. Among them, 20 patients (42%) were scanned using 4D FreeBreathing. The 4D FreeBreathing showed moderate streaking artifact but improved motion artifact (P <.001-.17) at all phases. Pancreatic sharpness and overall image quality were almost comparable between two sequences (P = .17-.96). All 20 examinations in 4D FreeBreathing showed appropriate pancreatic phase images, but only 16 (57%; P <.001 for reviewer 1) and 18 (64%; P = .003 for reviewer 2) examinations showed it in eTHRIVE.

Conclusion: The use of 4D FreeBreathing combined with Compressed SENSE was feasible in pancreatic MRI and provided appropriate pancreatic phase images in all examinations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2024.111445DOI Listing

Publication Analysis

Top Keywords

pancreatic phase
12
pancreatic mri
12
dynamic contrast-enhanced
8
contrast-enhanced pancreatic
8
compressed sense
8
confidence scores
8
scan timing
8
pancreatic
7
appropriate pancreatic
4
phase image
4

Similar Publications

Background: A recent prospective phase II study (ECOG-ACRIN E2211) demonstrated that MGMT deficiency was associated with a significant response to capecitabine and temozolomide (CAPTEM) in pancreatic neuroendocrine neoplasms (NENs); however, routine MGMT analysis in NENs was not recommended. Our study sought to demonstrate whether loss of MGMT protein expression is associated with improved overall survival (OS) in patients receiving CAPTEM for NENs from various tumor sites.

Materials And Methods: Paraffin-embedded tumor samples were evaluated by immunohistochemistry (IHC) using an MGMT monoclonal antibody.

View Article and Find Full Text PDF

Background: Advanced pancreatic ductal adenocarcinoma (aPDAC) is often accompanied by significant muscle mass loss, contributing to poor prognosis. SarcAPACaP, an ancillary study of the GERCOR-APACaP phase III trial, evaluated the role of adapted physical activity (APA) in aPDAC Western patients receiving first-line chemotherapy. The study aimed to assess (1) the potential impact of computed tomography (CT)-quantified muscle mass before and during treatments on health-related quality of life (HRQoL) and overall survival (OS) and (2) the role of APA in mitigating muscle mass loss.

View Article and Find Full Text PDF

Aims: Progesterone receptor (PR) is a crucial prognostic marker in breast cancer. However, achieving consistent results in PR immunohistochemistry (IHC) remains challenging due to the lack of well-defined low-positive controls. This study aimed to identify benign tissues with consistent low-level PR expression to serve as ideal controls for IHC.

View Article and Find Full Text PDF

This study aims to develop and evaluate a fast and robust deep learningbased auto-segmentation approach for organs at risk in MRI-guided radiotherapy of pancreatic cancer to overcome the problems of time-intensive manual contouring in online adaptive workflows. The research focuses on implementing novel data augmentation techniques to address the challenges posed by limited datasets. Approach: This study was conducted in two phases.

View Article and Find Full Text PDF

Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising.

Invest Radiol

January 2025

From the Department of Radiology, Stanford University, Stanford, CA (K.W., M.J.M., A.M.L., A.B.S., A.J.H., D.B.E., R.L.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (K.W.); GE HealthCare, Houston, TX (X.W.); GE HealthCare, Boston, MA (A.G.); and GE HealthCare, Menlo Park, CA (P.L.).

Objectives: Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!