Thermally-resilient, phase-invertible, ultra-stable all-aqueous compartments by pH-modulated protein colloidal particles.

J Colloid Interface Sci

College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China. Electronic address:

Published: July 2024

The essence of compartmentalization in cells is the inspiration behind the engineering of synthetic counterparts, which has emerged as a significant engineering theme. Here, we report the formation of ultra-stable water-in-water (W/W) emulsion droplets. These W/W droplets demonstrate previously unattained stability across a broad pH spectrum and exhibit resilience at temperatures up to 80℃, overcoming the challenge of insufficient robustness in dispersed droplets of aqueous two-phase systems (ATPS). The exceptional robustness is attributed to the strong anchoring of micelle-like casein colloidal particles at the PEO/DEX interface, which maintains stability under varying environmental conditions. The increased surface hydrophobicity of these particles at high temperatures contributes to the formation of thermally-stable droplets, enduring temperatures as high as 80℃. Furthermore, our study illustrates the adaptable affinity of micelle-like casein colloidal particles towards the PEO/DEX-rich phase, enabling the formation of stable DEX-in-PEO emulsions at lower pH levels, and PEO-in-DEX emulsions as the pH rises above the isoelectric point. The robust nature of these W/W emulsions unlocks new possibilities for exploring various biochemical reactions within synthetic subcellular modules and lays a solid foundation for the development of novel biomimetic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.03.155DOI Listing

Publication Analysis

Top Keywords

colloidal particles
12
micelle-like casein
8
casein colloidal
8
thermally-resilient phase-invertible
4
phase-invertible ultra-stable
4
ultra-stable all-aqueous
4
all-aqueous compartments
4
compartments ph-modulated
4
ph-modulated protein
4
protein colloidal
4

Similar Publications

Magnetic particle imaging (MPI) is an emerging modality that can address longstanding technological challenges encountered with magnetic particle hyperthermia (MPH) cancer therapy. MPI is a tracer technology compatible with MPH for which magnetic nanoparticles (MNPs) provide signal for MPI and heat for MPH. Identifying whether a specific MNP formulation is suitable for both modalities is essential for clinical implementation.

View Article and Find Full Text PDF

Direct force measurements by atomic force microscopy (AFM) have become an indispensable analytical tool in the last decades. Force measurements have been widely used for adhesion measurements, often in combination with the colloidal probe technique. For the latter technique, a colloidal particle is attached to the end of an AFM cantilever, proving great flexibility in terms of colloid/surface interaction to be studied.

View Article and Find Full Text PDF

Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.

View Article and Find Full Text PDF

Encapsulation of Oil Droplets Using Film-Forming Janus Nanoparticles.

Langmuir

January 2025

School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.

Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).

View Article and Find Full Text PDF

Measuring XNA polymerase fidelity in a hydrogel particle format.

Nucleic Acids Res

January 2025

Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States.

Growth in the development of engineered polymerases for synthetic biology has led to renewed interest in assays that can measure the fidelity of polymerases that are capable of synthesizing artificial genetic polymers (XNAs). Conventional approaches require purifying the XNA intermediate of a replication cycle (DNA → XNA → DNA) by denaturing polyacrylamide gel electrophoresis, which is a slow, costly, and inefficient process that requires a large-scale transcription reaction and careful extraction of the XNA strand from the gel slice. In an effort to streamline the assay, we developed a purification-free approach in which the XNA transcription and reverse transcription steps occur inside the matrix of a hydrogel-coated magnetic particle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!