Gene mutations are a source of genetic instability which fuels the progression of cancer. Mutations in BRCA1 and BRCA2 are considered as major drivers in the progression of breast cancer and their detection indispensable for devising therapeutic and management approaches. The current study aims to identify novel pathogenic and recurrent mutations in BRCA1 and BRCA2 in Pakhtun population from the Khyber Pakhtunkhwa. To determine the BRCA1 and BRCA2 pathogenic mutation prevalence in Pakhtun population from KP, whole exome sequencing of 19 patients along with 6 normal FFPE embedded blocks were performed. The pathogenicity of the mutations were determined and they were further correlated with different hormonal, sociogenetic and clinicopathological features. We obtained a total of 10 mutations (5 somatic and 5 germline) in BRCA1 while 27 mutations (24 somatic and 3 germline) for BRCA2. Five and seventeen pathogenic or deleterious mutations were identified in BRCA1 and BRCA2 respectively by examining the mutational spectrum through SIFT, PolyPhen-2 and Mutation Taster. Among the SNVs, BRCA1 , BRCA2 were identified as mutations of the interaction sites as predicted by the deep algorithm based ISPRED-SEQ prediction tool. SAAFEQ-SEQ web-based algorithm was used to calculate the changes in free energy and effect of SNVs on protein stability. All SNVs were found to have a destabilizing effect on the protein. ConSurf database was used to determine the evolutionary conservation scores and nature of the mutated residues. Gromacs 4.5 was used for the molecular simulations. Ramachandran plots were generated using procheck server. STRING and GeneMania was used for prediction of the gene interactions. The highest number of mutations (BRCA1 7/10, 70 %) were on exon 9 and (BRCA2, 11/27; 40 %) were on exon 11. 40 % and 60 % of the BRCA2 mutations were associated Grade 2 and Grade 3 tumors respectively. The present study reveals unique BRCA1 and BRCA2 mutations in Pakhtun population. We further suggest sequencing of the large cohorts for further characterizing the pathogenic mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026844 | PMC |
http://dx.doi.org/10.1016/j.neo.2024.100989 | DOI Listing |
Eur Urol
January 2025
Department of Oncology, City of Hope Cancer Center, Goodyear, AZ, USA.
Background And Objective: Selection of patients harboring mutations in homologous recombination repair (HRR) genes for treatment with a PARP inhibitor (PARPi) is challenging in metastatic castration-resistant prostate cancer (mCRPC). To gain further insight, we quantitatively assessed the differential efficacy of PARPi therapy among patients with mCRPC and different HRR gene mutations.
Methods: This living meta-analysis (LMA) was conducted using the Living Interactive Evidence synthesis framework.
ESMO Open
January 2025
Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bind.), Section of Medical Oncology, University of Palermo, Palermo, Italy.
Background: Germline pathogenic variants (gPVs) in the breast cancer susceptibility gene 1/2 (BRCA1/2) genes confer high-penetrance susceptibility to breast cancer (BC) and ovarian cancer (OC). Although most female BRCA carriers develop only a single BRCA-associated tumor in their lifetime, a smaller subpopulation is diagnosed with multiple primary tumors (MPTs). The genetic factors influencing this risk remain unclear.
View Article and Find Full Text PDFESMO Open
January 2025
Dana-Farber Cancer Institute, Boston, USA. Electronic address:
Background: Lu-prostate-specific membrane antigen (PSMA)-617 (LuPSMA) is a radionuclide therapy approved for patients with PSMA-avid metastatic castrate-resistant prostate cancer (mCRPC). We evaluated whether alterations in the DNA damage repair (DDR) pathway were associated with outcomes to LuPSMA.
Patients And Methods: We identified an institutional cohort of men (n = 134) treated with ≥2 cycles of LuPSMA who had panel-based germline and/or tumor genomic sequencing.
BMC Cancer
January 2025
Medical and Translational Oncology, Department of Oncology, Azienda Ospedaliera Santa Maria, Viale Tristano Di Joannuccio 1, Terni, 05100, Italy.
Prostate cancer (PCa) ranks among the most prevalent malignancies in men, with notable associations to Hereditary Breast and Ovarian Cancer Syndrome (HBOC) and Lynch Syndrome, both linked to germline likely pathogenetic variant/pathogenetic variant (LPV/PV) in genes involved in DNA repair. Among these genes, BRCA2 in PCa patients is the most frequently altered. Despite progresses, challenges in BRCA carriers detection persist, with a quarter of PCa cases lacking family history.
View Article and Find Full Text PDFClin Proteomics
January 2025
Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
Integrating functional proteomics and next-generation sequencing (NGS) offers a comprehensive approach to unraveling the molecular intricacies of breast cancer. This study investigates the functional interplay between genomic alterations and protein expression in Taiwanese breast cancer patients. By analyzing 61 breast cancer samples using tandem mass tag (TMT) labeling and mass spectrometry, coupled with whole-exome sequencing (WES) or targeted sequencing, we identified key genetic mutations and their impact on protein expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!