Background And Aims: Inflammation and atherosclerosis (AS) are closely associated to Secreted Protein Acidic and Rich in Cysteine (SPARC) and its related factors. This study attempted to define the role and the potential mechanism of SPARC and its related factors in ameliorating hyperlipidemia and AS by aerobic exercise intervention.
Methods: The AS rat model was established with a high-fat diet plus vitamin D3 intraperitoneal injection. Treadmill exercises training (5 days/week at 14 m/min for 60 min/day) for 6 weeks was carried out for AS rat intervention method. Western blotting and qRT-PCR were used to analyze the mRNA and protein expression of SPARC and its related factors, respectively. H&E staining was applied to evaluate the morphological changes and inflammation damage. Von Kossa staining was used to measure the degree of vascular calcification. Fluorescence immunohistochemistry staining was used to detect the expression and distribution of SPARC signal molecules.
Results: SPARC was highly expressed and co-localization with the smooth muscle marker α-SMC in the AS rat. And its downstream factors, NF-κB, Caspase-1, IL-1β and IL-18 were upregulated (P < 0.05 or P < 0.01), FNDC5 expression was downregulated in AS rat model. However, slight declined body weight, delayed AS progression, decreased hyperlipidemia and favorable morphology of skeletal muscle and blood vessels have been detected in AS rat with aerobic exercise intervention. Moreover, the expression of SPARC and its downstream factors were decreased (P < 0.05 or P < 0.01), while elevated the expression of FNDC5 (P < 0.01) was observed after aerobic exercise intervention.
Conclusions: This study suggested that aerobic exercise ameliorated hyperlipidemia and AS by effectively inhibiting SPARC signal, and vascular smooth muscle cells may contribute greatly to the protection of AS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2024.111856 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!