Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inverse spinel ferrimagnetic NiCoO(NCO) exhibits volatile physical properties due to the complex ion/valence occupation, which complicates the study its intrinsic properties. In this work, robust room temperature perpendicular magnetic anisotropy (PMA) is distinctly observed in high-quality RF-sputtered NCO film down to 3 uc (2.4 nm), confirmed by the room temperature anomalous Hall effect. The NCO films show a good metallic conductivity with a dimensional driven metal-insulator transition. The scaling relation between anomalous Hall conductivity (σxy) and the longitudinal conductivity (σxx) reveals the dirty metal behavior in conjunction with the contribution of intrinsic Berry phase or disorder-enhanced electron correlation contribute to the anomalous Hall effect for thick films while the dirty scaling law dominates for the thin films. This work introduces an oxide candidate with robust room temperature PMA as well as massive production ability for the functional spintronic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ad387b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!