Enhanced Piezoelectricity of MAPbI by the Introduction of MXene and Its Utilization in Boosting High-Performance Photodetectors.

Adv Mater

CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China.

Published: June 2024

Recently, perovskite photodetectors (PDs) are risen to prominence due to substantial research interest. Beyond merely tweaking the composition of materials, a cutting-edge advancement lies in leveraging the innate piezoelectric polarization properties of perovskites themselves. Here, the investigation shows utilizing TiCT, a typical MXene, as an intermediate layer for significantly boosting the piezoelectric property of MAPbI thin films. This improvement is primarily attributed to the enhanced polarization of the methylammonium (MA) groups within MAPbI, induced by the OH groups present in TiCT. A flexible PD based on the MAPbI/MXene heterostructure is then fabricated. The new device is sensitive to a wide range of wavelengths, displays greatly enhanced performance owing to the piezo-phototronic coupling. Moreover, the device is endowed with a greatly reduced response time, down to millisecond level, through the pyro-phototronic effect. The characterization shows applying a -1.2% compressive strain on the PD leads to a remarkable 102% increase in the common photocurrent, and a 76% increase in the pyro-phototronic current. The present work reveals how the emerging piezo-phototronic and pyro-phototronic effects can be employed to design high-performance flexible perovskite PDs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202313288DOI Listing

Publication Analysis

Top Keywords

enhanced piezoelectricity
4
piezoelectricity mapbi
4
mapbi introduction
4
introduction mxene
4
mxene utilization
4
utilization boosting
4
boosting high-performance
4
high-performance photodetectors
4
photodetectors perovskite
4
perovskite photodetectors
4

Similar Publications

We present an active alignment and stabilization control system for laser setups based on a thin-disk regenerative amplifier. This method eliminates power and pointing instability during the warm-up period and improves long-term stability throughout the entire operation. The alignment method is based on a four-mirror control system consisting of two motorized mirrors placed within the regenerative amplifier cavity, two additional motorized mirrors external to the amplifier cavity, and four camera detectors.

View Article and Find Full Text PDF

Piezoelectric materials directly convert between electrical and mechanical energies. They are used as transducers in applications such as nano-positioning and ultrasound imaging. Improving the properties of these devices requires piezoelectric materials capable of delivering a large longitudinal strain on the application of an electric field.

View Article and Find Full Text PDF

This study presents a comprehensive method for detecting debonding defects in concrete-filled steel tube (CFST) structures using wave propagation analysis with externally attached piezoelectric ceramic sensors. Experimental tests and numerical simulations were conducted to evaluate the sensitivity and accuracy of two measurement techniques-the flat and oblique measurement methods-in detecting debonding defects of varying lengths and heights. The results demonstrate that the flat measurement method excels in detecting debonding height, while the oblique method is more effective for detecting debonding length.

View Article and Find Full Text PDF

In recent years, civil engineering has increasingly embraced communication tools for automation, with sensors playing a pivotal role, especially in structural health monitoring (SHM). These sensors enable precise data acquisition, measuring parameters like force, displacement, and temperature and transmit data for timely interventions to prevent failures. This approach reduces reliance on manual inspections, offering more accurate outcomes.

View Article and Find Full Text PDF

Weigh-in-motion (WIM) systems aim to estimate a vehicle's weight by measuring static wheel loads as it passes at highway speed over roadway-embedded sensors. Vehicle oscillations and the resulting dynamic load components are critical factors affecting measurements and limiting accuracy. As of now, a satisfactory solution has yet to be found.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!