Fusarium head blight (FHB) is a devastating disease that occurs in warm and humid environments. The German wheat 'Centrum' has displayed moderate to high levels of FHB resistance in the field for many years. In this study, an F recombinant inbred line (RIL) population derived from cross 'Centrum' × 'Xinong 979' was evaluated for FHB response following point inoculation in five environments. The population and parents were genotyped using the GenoBaits Wheat 16 K Panel. Stable quantitative trait loci (QTL) associated with FHB resistance in 'Centrum' were mapped on chromosome arms 2DS and 5BS. The most effective QTL, located in 2DS, was identified as a new chromosome region represented by a 1.4 Mb interval containing 17 candidate genes. Another novel QTL was mapped in chromosome arm 5BS of a 5BS to 7BS translocation chromosome. In addition, two environmentally sensitive QTL were mapped on chromosome arms 2BL from 'Centrum' and 5AS from 'Xinong 979'. Polymorphisms of flanking phenotypic variance explained (PVE) markers (allele-specific quantitative PCR [AQP]) for and for were validated in a panel of 217 cultivars and breeding lines. These markers could be useful for marker-assisted selection (MAS) of FHB resistance and provide a starting point for fine mapping and marker-based cloning of the resistance genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-01-24-0135-RE | DOI Listing |
Mol Plant Microbe Interact
January 2025
USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, Indiana, United States;
Most plant pathogens secrete effector proteins to circumvent host immune responses, thereby promoting pathogen virulence. One such pathogen is the fungus , which causes Fusarium Head Blight (FHB) disease on wheat and barley. Transcriptomic analyses revealed that expresses many candidate effector proteins during early phases of the infection process, some of which are annotated as proteases.
View Article and Find Full Text PDFNat Genet
January 2025
The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Centre and State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.
Ambiguity about whether the histidine-rich calcium-binding protein-coding gene (His) or the pore-forming toxin-like gene (PFT) or both are responsible for Fusarium head blight (FHB) resistance conferred by the Fhb1 quantitative trait locus hinders progress toward elucidating Fhb1 resistance mechanisms. Here, with a series of developed lines with or without PFT but all possessing His and five His-carrying PFT mutant lines created via gene editing, we show that PFT does not confer FHB resistance and that the His resistance effect does not require PFT in the tested conditions. We also show that PFT mutations are not associated with morphological and phenological characteristics that often affect FHB severity.
View Article and Find Full Text PDFMol Breed
January 2025
Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway.
Unlabelled: Genomic selection-based breeding programs offer significant advantages over conventional phenotypic selection, particularly in accelerating genetic gains in plant breeding, as demonstrated by simulations focused on combating Fusarium head blight (FHB) in wheat. FHB resistance, a crucial trait, is challenging to breed for due to its quantitative inheritance and environmental influence, leading to slow progress using conventional breeding methods. Stochastic simulations in our study compared various breeding schemes, incorporating genomic selection (GS) and combining it with speed breeding, against conventional phenotypic selection.
View Article and Find Full Text PDFPlant Genome
March 2025
CREA - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda (PC), Italy.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Chemical control of head blight (FHB) in wheat plants is often challenged by the resistance outbreak and deoxynivalenol (DON) accumulation. Developing green partners for fungicides is crucial for reducing fungal growth, mycotoxin contamination, and agricultural fungicides input. Herein, we investigated the mechanism of MgO nanoparticles (NPs) in controlling FHB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!