Invasive meningococcal disease (IMD) is caused by Neisseria meningitidis, with the main serogroups responsible for the disease being A, B, C, W, X, and Y. To date, several vaccines targeting N. meningitidis have been developed albeit with a short-lived protection. Given that MenW and MenB are the most common causes of IMD in Europe, Turkey, and the Middle East, we aimed to develop an outer membrane vesicle (OMV) based bivalent vaccine as the heterologous antigen source. Herein, we compared the immunogenicity, and breadth of serum bactericidal activity (SBA) assay-based protective coverage of OMV vaccine to the X serotype with existing commercial meningococcal conjugate and polysaccharide (PS) vaccines in a murine model. BALB/c mice were immunized with preclinical batches of the W + B OMV vaccine, either adjuvanted with Alum, CpG ODN, or their combinations, and compared with a MenACYW conjugate vaccine (NimenrixTM, Pfizer), and a MenB OMV-based vaccine (Bexsero®, GSK), The immune responses were assessed through enzyme-linked immunosorbent assay (ELISA) and SBA assay. Antibody responses and SBA titers were significantly higher in the W + B OMV vaccine when adjuvanted with Alum or CpG ODN, as compared to the control groups. Moreover, the SBA titers were not only significantly higher than those achieved with available conjugated ACYW vaccines but also on par with the 4CMenB vaccines. In conclusion, the W + B OMV vaccine demonstrated the capacity to elicit robust antibody responses, surpassing or matching the levels induced by licensed meningococcal vaccines. Consequently, the W + B OMV vaccine could potentially serve as a viable alternative or supplement to existing meningococcal vaccines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/intimm/dxae016 | DOI Listing |
Microb Cell Fact
January 2025
College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China.
Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections.
View Article and Find Full Text PDFLife (Basel)
December 2024
Division of Microbiology and Molecular Biology, Medical Faculty, Private Sigmund Freud University, Freudplatz 3, 1020 Wien, Austria.
The attractiveness of OMVs derived from Gram-negative bacteria lies in the fact that they have two biomembranes sandwiching a peptidoglycan layer. It is well known that the envelope of OMVs consists of the outer bacterial membrane [OM] and not of the inner one [IM] of the source bacterium. This implies that all outer membranous molecules found in the OM act as antigens.
View Article and Find Full Text PDFJ Control Release
December 2024
The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc, Changzhou 213164, China.
Front Immunol
December 2024
Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina.
Introduction: We previously identified -derived outer membrane vesicles (OMVs) as a promising immunogen for improving pertussis vaccines. In this study, we evaluated the efficacy of our vaccine prototype in immunization strategies aimed at reducing disease transmission by targeting colonization in the upper airways while maintaining protection against severe disease by reducing colonization in the lower respiratory tract.
Methods: We assessed different mucosal administration strategies in a murine model, including homologous mucosal 2-dose prime-boost schedules and heterologous prime-boost strategies combining intramuscular (IM) systemic immunization with mucosal routes (intranasal, IN; or sublingual, SL).
Limited protective immunologic responses to natural infection and a lack of knowledge about mechanisms of protection have hampered development of an effective vaccine. Recent studies in humans and mice have found meningococcal outer membrane vesicle-containing vaccines (OMV) induce cross species immune responses against gonococci and are associated with protection. The exact mechanisms or how humoral and cellular immunity are related to protection, remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!