The transport of methane from sediments to the atmosphere by rising gas bubbles (ebullition) can be the dominant, yet highly variable emission pathway from shallow aquatic ecosystems. Ebullition fluxes have been reported to vary in space and time, as methane production, accumulation, and bubble release from the sediment matrix is affected by several physical and bio-geochemical processes acting at different timescales. Time-series analysis and empirical models have been used for investigating the temporal dynamics of ebullition and its controls. In this study, we analyzed the factors governing the temporal dynamics of ebullition and evaluated the application of empirical models to reproduce these dynamics across different timescales and across different aquatic systems. The analysis is based on continuous high frequency measurements of ebullition fluxes and environmental variables in a mesotrophic subtropical and polymictic freshwater reservoir. The synchronization of ebullition events across different monitoring sites, and the extent to which ebullition was correlated to environmental variables varied throughout the three years of observations and were affected by thermal stratification in the reservoir. Empirical models developed for other aquatic systems could reproduce a limited fraction of the variability in observed ebullition fluxes (R2 < 0.3), however the predictions could be improved by considering additional environmental variables. The model performance depended on the timescale. For daily and weekly time intervals, a generalized additive model could reproduce 70 and 96% of ebullition variability but could not resolve hourly flux variations (R2 = 0.19). Lastly, we discuss the potential application of empirical models for filling gaps in ebullition measurements and for reproducing the main temporal dynamics of the fluxes. The results provide crucial information for emission estimates, and for the development and implementation of strategies targeting at a reduction of methane emissions from inland waters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971506PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298186PLOS

Publication Analysis

Top Keywords

temporal dynamics
16
empirical models
16
ebullition fluxes
12
environmental variables
12
ebullition
11
freshwater reservoir
8
dynamics ebullition
8
application empirical
8
aquatic systems
8
dynamics
5

Similar Publications

Cell-cell interactions and communication represent the fundamental cornerstone of cells' collaborative efforts in executing diverse biological processes. A profound understanding of how cells interface through various mediators is pivotal across a spectrum of biological systems. Recent strides in microfluidic technologies have significantly bolstered the precision and prowess in capturing and manipulating cells with exceptional spatial and temporal resolution.

View Article and Find Full Text PDF

Listeners with hearing loss have trouble following a conversation in multitalker environments. While modern hearing aids can generally amplify speech, these devices are unable to tune into a target speaker without first knowing to which speaker a user aims to attend. Brain-controlled hearing aids have been proposed using auditory attention decoding (AAD) methods, but current methods use the same model to compare the speech stimulus and neural response, regardless of the dynamic overlap between talkers which is known to influence neural encoding.

View Article and Find Full Text PDF

Introduction: Wavelet thresholding techniques are crucial in mitigating noise in data communication and storage systems. In image processing, particularly in medical imaging like MRI, noise reduction is vital for improving visual quality and accurate analysis. While existing methods offer noise reduction, they often suffer from limitations like edge and texture loss, poor smoothness, and the need for manual parameter tuning.

View Article and Find Full Text PDF

The competition for resources is a defining feature of microbial communities. In many contexts, from soils to host-associated communities, highly diverse microbes are organized into metabolic groups or guilds with similar resource preferences. The resource preferences of individual taxa that give rise to these guilds are critical for understanding fluxes of resources through the community and the structure of diversity in the system.

View Article and Find Full Text PDF

Tau exhibits change in both spatial extent and density of pathology along the Alzheimer's disease (AD) spectrum with each aspect contributing to the overall burden of pathological tau. Nevertheless, studies using Tau PET have measured either magnitude using standardized uptake value ratios (SUVRs) or extent using number of Tau+ regions. We hypothesized that combining these two dimensions into a single measure of Magnitude and eXtent, Tau-MaX, would provide improved quantification of global tau burden as well as allowing for a region-agnostic measure of global tau burden that does not require a pre-specified region of interest (ROI) or meta-ROI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!