Addressing soil nutrient degradation and global warming requires novel solutions. Enhanced weathering using crushed basalt rock is a promising dual-action strategy that can enhance soil health and sequester carbon dioxide. This study examines the short-term effects of basalt amendment on spring oat (Avena sativa L.) during the 2022 growing season in NE England. The experimental design consisted of four blocks with control and basalt-amended plots, and two cultivation types within each treatment, laid out in a split plot design. Basalt (18.86 tonnes ha-1) was incorporated into the soil during seeding. Tissue, grain and soil samples were collected for yield, nutrient, and pH analysis. Basalt amendment led to significantly higher yields, averaging 20.5% and 9.3% increases in direct drill and ploughed plots, respectively. Soil pH was significantly higher 256 days after rock application across cultivation types (direct drill: on average 6.47 vs. 6.76 and ploughed: on average 6.69 vs. 6.89, for control and basalt-amended plots, respectively), likely due to rapidly dissolving minerals in the applied basalt, such as calcite. Indications of growing season differences in soil pH are observed through direct measurement of lower manganese and iron uptake in plants grown on basalt-amended soil. Higher grain and tissue potassium, and tissue calcium uptake were observed in basalt-treated crops. Notably, no accumulation of potentially toxic elements (arsenic, cadmium, chromium, nickel) was detected in the grain, indicating that crops grown using this basaltic feedstock are safe for consumption. This study indicates that basalt amendments can improve agronomic performance in sandy clay-loam agricultural soil under temperate climate conditions. These findings offer valuable insights for producers in temperate regions who are considering using such amendments, demonstrating the potential for improved crop yields and environmental benefits while ensuring crop safety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971544 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295031 | PLOS |
Nat Commun
December 2024
Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
In optical imaging of solid tumors, signal contrasts derived from inherent tissue temperature differences have been employed to distinguish tumor masses from surrounding tissue. Moreover, with the advancement of active infrared imaging, dynamic thermal characteristics in response to exogenous thermal modulation (heating and cooling) have been proposed as novel measures of tumor assessment. Contrast factors such as the average rate of temperature changes and thermal recovery time constants have been investigated through an active thermal modulation imaging approach, yielding promising tumor characterization results in a xenograft mouse model.
View Article and Find Full Text PDFSmall
December 2024
Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
Water energy-converting techniques that focus on interfacial charge separation and transfer have aroused significant attention. However, the water-repelling nature leads to a less dense liquid layer and a sharp gradient of liquid velocity, which limits its output performance. Here, a water sliding generator (WSG) based on a smooth liquid-like/semiconductor surface (SLSS) is developed that harnesses the full advantage of liquid sliding friction.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Biotechnology and Microbiology, Karnatak University, Dharwad (Karnataka, India).
Lipases are triacylglycerol hydrolases with various potential applications because of their different physical properties. Most lipase producers are extracellular in nature and are created using solid-state fermentation and submerged fermentation methods. The fungal, mycelial, and yeast lipases are produced using various solid substrates through the solid-state fermentation method.
View Article and Find Full Text PDFFront Psychiatry
December 2024
Department of Social Work, The University of Jordan, Aljubeiha, Jordan.
Background: Climate change significantly impacts global well-being, with rural and agricultural communities, particularly women, bearing a disproportionate burden. In Pakistan's Malakand Division, women face increased mental health challenges due to environmental stressors such as temperature rise, extreme weather, and environmental degradation. These stressors are expected to exacerbate issues like stress, anxiety, and depression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!