We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g., unmeasured confounders). The method represents a novel extension of the power prior where discounting weights are computed separately for each external control based on compatibility with the randomized control data. The discounting weights are determined using the predictive distribution for the external controls derived via the posterior distribution for time-to-event parameters estimated from the RCT. This method is applied using a proportional hazards regression model with piecewise constant baseline hazard. A simulation study and a real-data example are presented based on a completed trial in non-small cell lung cancer. It is shown that the case weighted power prior provides robust inference under various forms of incompatibility between the external controls and RCT population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968526PMC
http://dx.doi.org/10.1093/biomtc/ujae019DOI Listing

Publication Analysis

Top Keywords

external controls
12
case weighted
8
weighted power
8
external control
8
power prior
8
discounting weights
8
control
5
external
5
power priors
4
priors hybrid
4

Similar Publications

Robot-assisted medial patellofemoral ligament reconstruction in the treatment of recurrent patellar dislocation can improve tunnel accuracy but yields similar outcome compared with traditional technique.

Arthroscopy

January 2025

Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou City, Gansu Province, China; Orthopaedics Clinical Medical Research Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou City, Gansu Province, China; Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou City, Gansu Province, China. Electronic address:

Purpose: To review patients with recurrent patellar dislocation surgically treated with robot-assisted medial patellofemoral ligament (MPFL) reconstruction compared with patients who underwent surgery using the traditional freehand technique.

Methods: A retrospective cohort study was performed to identify patients who underwent MPFL reconstruction from January 2020 to December 2023 in our hospital. The inclusion criteria were: patients aged from 15 to 50 years; patellar dislocation occurred two or more times; a Merchant view or computed tomography (CT) scan indicating patellofemoral joint malalignment, external patellar inclination, or lateral patellar dislocation; underwent MPFL reconstruction via robot-assisted or traditional freehand technique; complete medical records and imaging data before and after surgery; a minimum of 1 year of postoperative follow-up.

View Article and Find Full Text PDF

Mass vaccination against peste des petits ruminants (PPR) in two southern states of India, namely Andhra Pradesh and Karnataka, has reduced disease outbreaks significantly. The sporadic outbreaks reported now can be attributed in part to the recurring movement of sheep and goats between these contiguous states. This study assessed the present level of economic burden and impact of vaccination on the local system (one state), considering the exposure from the external system (neighboring state) using a system dynamic (SD) model.

View Article and Find Full Text PDF

Traumatic hemorrhage and infection are major causes of mortality in wounds caused by battlefield injuries, hospital procedures, and traffic accidents. Developing a multifunctional nano-drug capable of simultaneously controlling bleeding, preventing infection, and promoting wound healing is critical. This study aimed to design and evaluate a nanoparticle-based solution to address these challenges effectively.

View Article and Find Full Text PDF

Metamaterials are pushing the limits of traditional materials and are fascinating frontiers in scientific innovation. Mechanical metamaterials (MMs) are a category of metamaterials that display properties and performances that cannot be realized in conventional materials. Exploring the mechanical properties and various aspects of vibration and damping control is becoming a crucial research area.

View Article and Find Full Text PDF

Lithium-ion batteries represent a significant component of the field of energy storage, with a diverse range of applications in consumer electronics, portable devices, and numerous other fields. In view of the growing concerns about the safety of batteries, it is of the utmost importance to develop a sensor that is capable of accurately monitoring the internal temperature of lithium-ion batteries. External sensors are subject to the necessity for additional space and ancillary equipment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!