Xylosandrus crassiusculus is an invasive ambrosia beetle comprising two differentiated genetic lineages, named cluster 1 and cluster 2. These lineages invaded different parts of the world at different periods of time. We tested whether they exhibited different climatic niches using Schoener's D and Hellinger's I indices and modeled their current potential geographical ranges using the Maxent algorithm. The resulting models were projected according to future and recent past climate datasets for Europe and the Mediterranean region. The future projections were performed for the periods 2041-2070 and 2071-2100 using 3 SSPs and 5 GCMs. The genetic lineages exhibited different climate niches. Parts of Europe, the Americas, Sub-Saharan Africa, Asia, and Oceania were evaluated as suitable for cluster 1. Parts of Europe, South America, Central and South Africa, Asia, and Oceania were considered as suitable for cluster 2. Models projection under future climate scenarios indicated a decrease in climate suitability in Southern Europe and an increase in North Eastern Europe in 2071-2100. Most of Southern and Western Europe was evaluated as already suitable for both clusters in the early twentieth century. Our results show that large climatically suitable regions still remain uncolonized and that climate change will affect the geographical distribution of climatically suitable areas. Climate conditions in Europe were favorable in the twentieth century, suggesting that the recent colonization of Europe is rather due to an increase in propagule pressure via international trade than to recent environmental changes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-024-05528-9DOI Listing

Publication Analysis

Top Keywords

invasive ambrosia
8
ambrosia beetle
8
xylosandrus crassiusculus
8
climate change
8
genetic lineages
8
future climate
8
europe
8
parts europe
8
africa asia
8
asia oceania
8

Similar Publications

When introduced to multiple distinct ranges, invasive species provide a compelling natural experiment for understanding the repeatability of adaptation. Ambrosia artemisiifolia is an invasive, noxious weed, and chief cause of hay fever. Leveraging over 400 whole-genome sequences spanning the native-range in North America and 2 invasions in Europe and Australia, we inferred demographically distinct invasion histories on each continent.

View Article and Find Full Text PDF

Inhibition of the invasive plant Ambrosia trifida by Sigesbeckia glabrescens extracts.

Ecotoxicol Environ Saf

January 2025

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:

Ambrosia trifida is an invasive weed that destroys the local ecological environment, and causes a reduction in population diversity and grassland decline. The evolution of herbicide resistance has also increased the difficulty of managing A. trifida, so interspecific plant competition based on allelopathy has been used as an effective and sustainable ecological alternative.

View Article and Find Full Text PDF

Ragweed, as an exotic invasive species, which is one of the most important allergens for hay fever, has been invading China for more than 80 years. The increasing number of people with hay fever makes effective treatment, as well as the prevention and control of pollen transmission critical. This article delves into a comprehensive research summary focusing on the allergenic properties of ragweed pollen, its pathogenic characteristics, epidemiological patterns, monitoring and control measures, as well as concentrated management approaches.

View Article and Find Full Text PDF

(ragweed) pollen - A growing aeroallergen of concern in South Africa.

World Allergy Organ J

December 2024

Division of Allergology and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa.

Background: Ragweed is an invasive, highly allergenic weed predicted to expand its habitat with warming global temperatures. Several species have been identified in South Africa for well over a century; however, its presence remained undetected by allergists and aerobiologists until the development of an extensive aerospora monitoring system across South African urban areas since 2019. This paper presents the inventory of preliminary investigation of the airborne pollen and the taxonomic identification of ragweed species.

View Article and Find Full Text PDF

Effects and Related Mechanisms of Allelopathy of 's Pollens on Corn Pollens, Stigmas, and Yield.

J Agric Food Chem

December 2024

College of Bioscience and Biotechnology, Liaoning Provincial Key Laboratory of Global Change and Biological Invasion, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China.

, a worldwide malignant invasive weed, can inhibit corn seed germination, seedling growth, and yield through allelopathy. However, it is unclear whether it can inhibit activities of corn pollens and stigmas and, thus, decrease corn yield through allelopathy. Here, we studied the allelopathic effects and related mechanisms of 's pollens on corn pollens, stigmas, and yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!