The role of Na-coupled bicarbonate transporters (NCBT) in health and disease.

Pflugers Arch

Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA.

Published: April 2024

Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338471PMC
http://dx.doi.org/10.1007/s00424-024-02937-wDOI Listing

Publication Analysis

Top Keywords

bicarbonate transporters
16
na-coupled bicarbonate
8
transporters
8
transporters ncbt
8
ncbts roles
8
bicarbonate
5
role na-coupled
4
ncbt health
4
health disease
4
cellular
4

Similar Publications

Uranyl Speciation in Carbonate-Rich Hydrothermal Solutions: A Molecular Dynamics Study.

Inorg Chem

December 2024

State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.

In this study, we employed classical molecular dynamics (CMD) and first-principles molecular dynamics (FPMD) simulations to investigate the speciation of uranyl in carbonate-rich hydrothermal solutions. The association constants (log) of uranyl carbonate complexes were derived from the potential of mean forces (PMFs) obtained from CMD simulations, and the acid constants (ps) of uranyl aqua ions were calculated using the FPMD-based vertical energy gap method. The results showed that uranyl ions could form stable mono- and bi-carbonate complexes at elevated temperatures and that uranyl aqua ions strongly hydrolyzed in neutral solutions at temperatures exceeding 473 K.

View Article and Find Full Text PDF

Carbonic anhydrases (CAs) are the main enzymes handling bicarbonate in the different cell compartments. This study analyses the expression of CAs in roots of Arabidopsis thaliana demes differing in tolerance to bicarbonate: the tolerant A1 deme and the sensitive deme, T6. Exposure to 10 mM NaCl caused a transient depolarization of the root cell membranes, and in contrast, the supply of 10 mM NaHCO caused hyperpolarization.

View Article and Find Full Text PDF

Background: Defects in SLC26A3, the major colonic Cl-/HCO3- exchanger, result in chloride-rich diarrhea, a reduction in short-chain fatty acid (SCFA)-producing bacteria, and a high incidence of inflammatory bowel disease in humans and in mice. Slc26a3-/- mice are, therefore, an interesting animal model for spontaneous but mild colonic inflammation and for testing strategies to reverse or prevent the inflammation. This study investigates the effect of Escherichia coli Nissle (EcN) application on the microbiome, SCFA production, barrier integrity, and mucosal inflammation in slc26a3-/- mice.

View Article and Find Full Text PDF

Donation after circulatory death (DCD) livers face increased risks of critical complications when preserved with static cold storage (SCS). Although machine perfusion (MP) may mitigate these risks, its cost and logistical complexity limit widespread application. We developed the Dynamic Organ Storage System (DOSS), which delivers oxygenated perfusate at 10°C with minimal electrical power requirement and allows real-time effluent sampling in a portable cooler.

View Article and Find Full Text PDF

Both chronic kidney disease (CKD) and type 2 diabetes (T2D) are modern epidemics worldwide and have become a severe public health problem. Chronic kidney disease progression in T2D patients is linked to the need for dialysis or kidney transplantation and represents the risk factor predisposing to serious cardiovascular complications. In recent years, important progress has occurred in nephroprotective pharmacotherapy in CKD patients with T2D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!