The maintenance of epithelial barrier function involves cellular tension, with cells pulling on their neighbors to maintain epithelial integrity. Wounding interrupts cellular tension, which may serve as an early signal to initiate epithelial repair. To characterize how wounds alter cellular tension we used a laser-recoil assay to map cortical tension around wounds in the epithelial monolayer of the pupal notum. Within a minute of wounding, there was widespread loss of cortical tension along both radial and tangential directions. This tension loss was similar to levels observed with Rok inactivation. Tension was subsequently restored around the wound, first in distal cells and then in proximal cells, reaching the wound margin ∼10 min after wounding. Restoring tension required the GPCR Mthl10 and the IP receptor, indicating the importance of this calcium signaling pathway known to be activated by cellular damage. Tension restoration correlated with an inward-moving contractile wave that has been previously reported; however, the contractile wave itself was not affected by Mthl10 knockdown. These results indicate that cells may transiently increase tension and contract in the absence of Mthl10 signaling, but that pathway is critical for fully resetting baseline epithelial tension after it is disrupted by wounding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151093PMC
http://dx.doi.org/10.1091/mbc.E23-05-0204DOI Listing

Publication Analysis

Top Keywords

tension
12
cellular tension
12
cortical tension
8
signaling pathway
8
contractile wave
8
epithelial
6
wounding
5
cells
5
wounding g-protein
4
g-protein coupled
4

Similar Publications

Dorsal closure is a process that occurs during embryogenesis of . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly.

View Article and Find Full Text PDF

Background: Motor imagery is the mental representation of a movement without physical execution. When motor imagery is performed to enhance motor learning and performance, participants must reach a temporal congruence between the imagined and actual movement execution. Identifying factors that can influence this capacity could enhance the effectiveness of motor imagery programs.

View Article and Find Full Text PDF

Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations.

J Chem Inf Model

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.

Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Enabling Fast AI-Driven Inverse Design of a Multifunctional Nanosurface by Parallel Evolution Strategies.

Nanomaterials (Basel)

December 2024

Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.

Multifunctional nanosurfaces receive growing attention due to their versatile properties. Capillary force lithography (CFL) has emerged as a simple and economical method for fabricating these surfaces. In recent works, the authors proposed to leverage the evolution strategies (ES) to modify nanosurface characteristics with CFL to achieve specific functionalities such as frictional, optical, and bactericidal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!