Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The phenomenon of binocular luster can be evoked by simple dichoptic center-surround stimuli showing a luminance contrast difference between the eyes. Previous findings support the idea that this phenomenon is mediated by a low-level conflict mechanism that integrates the monocular signals from different types of contrast detector cells. Also, isoluminant stimuli with different chromatic contrasts between eyes can trigger sensations of luster. Here, we investigate whether the lustrous impression in such purely chromatic stimuli depends on interocular contrast differences and in particular on interocular contrast polarity pairings in a similar way as in the achromatic case. In our experiments, we measured the magnitude of the lustrous response using a series of isoluminant dichoptic center-ring-surround stimuli with varying ring width whose chromatic properties were varied along the red-green and blue-yellow cardinal directions. The trends in the data were very similar to those of our former study with achromatic stimuli, indicating similar mechanisms in both cases. The empirical luster data could also be predicted fairly well by a chromatic version of our interocular conflict model (with overall R2 values between 0.577 and 0.639), for which two different receptive field models were used, simulating the behavior of color-sensitive double-opponent cells in V1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985784 | PMC |
http://dx.doi.org/10.1167/jov.24.3.7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!