Unlabelled: The widespread use of androgen receptor (AR) signaling inhibitors has led to an increased incidence of AR-negative castration-resistant prostate cancer (CRPC), limiting effective treatment and patient survival. A more comprehensive understanding of the molecular mechanisms supporting AR-negative CRPC could reveal therapeutic vulnerabilities to improve treatment. This study showed that the transcription factor nuclear factor I/B (NFIB) was upregulated in patient with AR-negative CRPC tumors and cell lines and was positively associated with an epithelial-to-mesenchymal transition (EMT) phenotype. Loss of NFIB inhibited EMT and reduced migration of CRPC cells. NFIB directly bound to gene promoters and regulated the transcription of EMT-related factors E-cadherin (CDH1) and vimentin (VIM), independent of other typical EMT-related transcriptional factors. In vivo data further supported the positive role of NFIB in the metastasis of AR-negative CRPC cells. Moreover, N6-methyladenosine (m6A) modification induced NFIB upregulation in AR-negative CRPC. Mechanistically, the m6A levels of mRNA, including NFIB and its E3 ubiquitin ligase TRIM8, were increased in AR-negative CRPC cells. Elevated m6A methylation of NFIB mRNA recruited YTHDF2 to increase mRNA stability and protein expression. Inversely, the m6A modification of TRIM8 mRNA, induced by ALKBH5 downregulation, decreased its translation and expression, which further promoted NFIB protein stability. Overall, this study reveals that upregulation of NFIB, mediated by m6A modification, triggers EMT and metastasis in AR-negative CRPC. Targeting the m6A/NFIB axis is a potential prevention and treatment strategy for AR-negative CRPC metastasis.
Significance: NFIB upregulation mediated by increased m6A levels in AR-negative castration-resistant prostate cancer regulates transcription of EMT-related factors to promote metastasis, providing a potential therapeutic target to improve prostate cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-23-1954 | DOI Listing |
Glycoconj J
December 2024
Department of Urology, University of the Ryukyus Graduate School of Medicine, 207 Uehara, Nishihara, Nakagami-gun, Okinawa, 903-0215, Japan.
Stage-specific embryonic antigen-4 (SSEA-4) is a developmentally regulated antigen, while expression level of SSEA-4 and / or its synthase ST3GAL2 is associated with prognosis in various malignancies. We have reported a prominent increase of SSEA-4 in castration-resistant prostate cancer (CRPC) and its negative correlation with the androgen receptor (AR). Meanwhile, loss of AR has increased to approximately 30% with the growing use of androgen receptor signaling inhibitor for metastatic CRPC (mCRPC).
View Article and Find Full Text PDFOncogene
November 2024
Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
Acquired resistance to androgen receptor (AR)-targeted therapies underscores the need to identify alternative therapeutic targets for treating lethal prostate cancer. In this study, we evaluated the prognostic significance of 1635 human transcription factors (TFs) by analyzing castration-resistant prostate cancer (CRPC) datasets from the West and East Stand Up to Cancer (SU2C) cohorts. Through this screening approach, we identified E2F8, a putative transcriptional repressor, as a TF consistently associated with poorer patient outcomes in both cohorts.
View Article and Find Full Text PDFJ Clin Invest
September 2024
The Institute of Cancer Research, London, United Kingdom.
Prostate
December 2024
Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Background: Proliferating cell nuclear antigen (PCNA) is essential for DNA replication and repair, cell growth, and survival. PCNA also enhances androgen receptor (AR) signaling in prostate cancer (PC) cells. We identified a PCNA interaction protein (PIP) box at the N-terminal domain of AR and developed a small peptide PCNA inhibitor R9-AR-PIP containing AR PIP-box.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!