Alkaloids play an essential role in protecting plants against herbivores. Humans can also benefit from the pharmacological effects of these compounds. Plants produce an immense variety of structurally different alkaloids, including quinolizidine alkaloids, a group of bi-, tri-, and tetracyclic compounds produced by species. Various lupin species produce different alkaloid profiles. To study the composition of quinolizidine alkaloids in lupin seeds, we collected 31 populations of two wild species native to Israel, and , and analyzed their quinolizidine alkaloid contents. Our goal was to study the alkaloid profiles of these two wild species to better understand the challenges and prospective uses of wild lupins. We compared their profiles with those of other commercial and wild lupin species. To this end, a straightforward method for extracting alkaloids from seeds and determining the quinolizidine alkaloid profile by LC-MS/MS was developed and validated in-house. For the quantification of quinolizidine alkaloids, 15 analytical reference standards were used. We used GC-MS to verify and cross-reference the identity of certain alkaloids for which no analytical standards were available. The results enabled further exploration of quinolizidine alkaloid biosynthesis. We reviewed and re-analyzed the suggested quinolizidine alkaloid biosynthesis pathway, including the relationship between the amino acid precursor l-lysine and the different quinolizidine alkaloids occurring in seeds of lupin species. Revealing alkaloid compositions and highlighting some aspects of their formation pathway are important steps in evaluating the use of wild lupins as a novel legume crop.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10974633 | PMC |
http://dx.doi.org/10.3390/toxins16030163 | DOI Listing |
J Asian Nat Prod Res
January 2025
School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China.
Three compounds, including a novel quinolizidine alkaloid, ochrocephalamine G (), were isolated from . Structural elucidation was achieved through spectroscopic analysis and electronic circular dichroism. Biological assays showed that ochrocephalamine G (100 μM) inhibited HBsAg and HBeAg by 8.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
Background: Castration of adult male rats led to the development of osteoporosis. Oxidative stress and inflammatory factors have been identified as potential causative factors. Notably, oxymatrine (OMT) possesses potent anti-inflammatory and antioxidant activities.
View Article and Find Full Text PDFBalkan Med J
January 2025
Department of Acupuncture, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310022, China.
Background: Breast cancer (BC) is the most prevalent solid cancer affecting women's health globally. Matrine (MAT), a traditional Chinese herb, has exhibited antitumor effects against BC. However, its mechanism of action, particularly whether it involves the control of cell proliferation and epithelial-mesenchymal transition (EMT), remains unknown.
View Article and Find Full Text PDFSci Rep
December 2024
College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.
View Article and Find Full Text PDFTissue Cell
December 2024
School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad 509301, India.
In this study, we investigated the efficacy of oxymatrine, a phytochemical alkaloid, in reducing inflammation and fibrosis in a rat model of IgA nephropathy (IgAN) through modulation of the TGF-β/SMAD signaling pathway. Thirty Sprague Dawley rats were randomized into control, IgAN, and treatment groups, the latter receiving oxymatrine postinduction of IgAN. Induced by bovine serum albumin, carbon tetrachloride, and lipopolysaccharides, the disease model was validated by immunofluorescence and histopathological analyses, confirming significant renal deposition of IgA and increased fibrosis markers (IL-6, TGF-β, SMAD 3, and α-SMA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!