Controllable synthesis of homochiral nano/micromaterials has been a constant challenge for fabricating various stimuli-responsive chiral sensors. To provide an avenue to this goal, we report electrospinning as a simple and economical strategy to form continuous homochiral microfibers with strain-sensitive chiroptical properties. First, electrospun homochiral microfibers from self-assembled cadmium sulfide (CdS) quantum dot magic-sized clusters (MSCs) are produced. Highly sensitive and reversible strain sensors are then fabricated by embedding these chiroptically active fibers into elastomeric films. The chiroptical response on stretching is indicated quantitatively as reversible changes in magnitude, spectral position (wavelength), and sign in circular dichroism (CD) and linear dichroism (LD) signals and qualitatively as a prominent change in the birefringence features under cross-polarizers. The observed periodic twisted helical fibrils at the surface of fibers provide insights into the origin of the fibers' chirality. The measurable shifts in CD and LD are caused by elastic deformations of these helical fibrillar structures of the fiber. To elucidate the origin of these chiroptical properties, we used field emission-electron microscopy (FE-SEM), atomic force microscopy (AFM), synchrotron X-ray analysis, polarized optical microscopy, as well as measurements to isolate the true CD, and contributions from photoelastic modulators (PEM) and LD. Our findings thus offer a promising strategy to fabricate chiroptical strain-sensing devices with multiple measurables/observables using electric-field-assisted spinning of homochiral nano/microfibers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009915 | PMC |
http://dx.doi.org/10.1021/acsami.3c17623 | DOI Listing |
Phys Rev Lett
December 2024
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
Nanobubbles wield a significant influence over the electronic properties of 2D materials, showing diverse applications ranging from flexible devices to strain sensors. Here, we reveal that a strongly correlated phenomenon, i.e.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.
View Article and Find Full Text PDFSmall Methods
January 2025
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Flexible sensing offers real-time force monitoring, presenting a versatile and effective solution for dexterous manipulation, healthcare, environmental exploration, and perception of physical properties. Nonetheless, a limitation of many existing flexible force sensors stems from their isotropic structure or material properties, preventing them from simultaneously detecting both the direction and magnitude of the applied force. Herein, a high-performance 3D force sensor based on orthogonal multimodal sensing, the cancellation principle, and the strain effect is proposed.
View Article and Find Full Text PDFLangmuir
January 2025
Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, School of Biology, Food and Environment, Hefei University, Hefei City 230601 China.
Triboelectric nanogenerators (TENGs) offer a convenient means to convert mechanical energy from human movement into electricity, exhibiting the application prospects in human behavior monitoring. Nevertheless, the present methods to improve the device monitoring effect are limited to the design of a triboelectric material level (control of electron gain and loss ability). As compared with reported work, we improve the monitoring effect of TENG-based tactile sensors by optimizing the structure of the electrode/triboelectric material interface by means of a multiple strains mechanism.
View Article and Find Full Text PDFAm J Vet Res
January 2025
Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa.
Objective: The aim was to investigate the patellar ligament strain with varying degrees of tibial plateau angles (TPAs) after tibial plateau leveling osteotomy (TPLO) in a cranial cruciate ligament (CrCL)-deficient stifle during the stance phase.
Methods: 12 pelvic cadaver limbs were secured to a custom-built jig to mimic a loadbearing stance after which an axial load of 120 N was applied. Patellar ligament strain, change in strain, and percent change in strain were calculated on pre-TPLO (intact and transected CrCL) and post-TPLO tibial TPAs of -5°, 0°, 5°, 10°, and 15°.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!