This paper describes the design, fabrication, and characterization of a quartz vibrating beam accelerometer consisting of a metal spring-mass and quartz double-ended tuning forks (DETFs). In this approach, the inertial force of the proof mass pulls or compresses the DETFs, affecting their resonance frequency and, thus, enabling the quasi-digital measurement of acceleration. An isolation structure was specifically designed to prevent the external interference stress from transforming into the DETFs and to decrease the DETFs' thermal stress as the ambient temperature changes. A stress-free and high-precision wire-cut electrical discharge machining process was introduced to solve the fabrication problem of flexible hinges, and a femtosecond laser was used to release the proof mass, comprehensively considering the compatibility of the fabrication process and structural design. The oscillation excitation and detection of the DETFs were analyzed, and the DETFs were fabricated using a micro-electromechanical systems process. Sensor dimensions were optimized to improve sensor sensitivity. An accelerometer prototype was fabricated, and its performance was characterized. The tested scale factor was 157.28 Hz/g, and its stability was 16.54 ppm. The bias stability and 1 g stability at 1 h were 18 and 7.84 µg, respectively. The experimental results validated the feasibility of the sensor design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0180789 | DOI Listing |
Biomed Microdevices
January 2025
Institute of Industrial Science, The University of Tokyo, Meguro-Ku, 153-8505, Tokyo, Japan.
Recently, photodynamic therapy (PDT) which involves a photosensitizer (PS), a special drug activated by light, and light irradiation has been widely used in treating various skin diseases such as port-wine stain as well as cancers such as melanoma and non-melanoma skin cancers. PDT comprises two general steps: the introduction of PS into the body or a specific spot to be treated, and the irradiation process using a light source with a specific wavelength to excite the PS. Although PDT is gaining great attention owing to its potential as a targeted approach in the treatment of skin cancers, several limitations still exist for practical use.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
Two-dimensional (2D) covalent organic frameworks (COFs) with designable pore structures can be synthesized under the guidance of topology diagrams. Among the five existing edge-transitive topological nets, topology is considered a fine candidate for constructing COFs with ultramicropores. However, all of the reported COFs with topology need the use of -symmetric monomers, which are limited in compound type and difficult to synthesize.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
A fused-silica three-port grating under TE-polarized normal incidence is designed and manufactured with improved diffraction efficiency (DE) and bandwidth. A physical explanation of the grating diffraction is provided using the simplified mode method (SMM), and parameters of the grating structure were optimized using rigorous coupled-wave analysis (RCWA). For a given set of optimized parameters, a transmitted three-port grating with an area of 170 ×170 was fabricated by scanning beam interference lithography (SBIL), and diffraction properties were investigated.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmacy, Quaid-i-Azam University, Islamabad 44000, Pakistan.
Objective: The fabrication of furosemide (FSM) with enhanced oral bioavailability and encapsulation was achieved using a nanostructured lipid carriers (NLCs) drug delivery system.: The uniform drug distribution is a barrier due to its low dose. The lipid-based delivery system was selected based on its poor solubility and permeability, limiting its poor partitioning and solubility in water-based polymeric delivery systems.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China University of Technology, South China Advanced Institute for Soft Matter Science and Technology, South China Advanced Institute for Soft Matter Science and Technology, 510640, Guangzhou, CHINA.
The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!