Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The faba bean, a significant cool-season edible legume crop, is susceptible to drought during the germination stage. Research regarding the genetic regulation of drought tolerance throughout this stage in the faba bean is limited. The differentially expressed proteins (DEPs) in faba beans between the drought-tolerant variety C105 and the drought-sensitive variant E1 during seed germination were identified in this work, accomplished through isobaric tags for relative and absolute quantitation (iTRAQ) analysis. A total of 3827 proteins were identified in the two varieties of germinating seeds. Compared to those of variety E1, an increase in 108 DEPs and a decrease in 61 DEPs were observed in variety C105 under drought. Conversely, in the control group, variety C105 showed 108 significantly upregulated DEPs and 55 significantly downregulated DEPs. GO and KEGG analyses showed that the DEPs associated with glutathione metabolism and protein processing demonstrated significant increases in response to drought stress. Protein-protein interaction (PPI) analysis unveiled three closely connected functional modules of protein translation, DNA replication, and post-translational modification, originating from 22 DEPs derived from the germination period of two varieties under drought stress. To verify the proteomic function, we selected three differentially expressed protein coding genes, which were overexpressed or silenced in tobacco, thereby enhancing the drought resistance of tobacco. This was accompanied via altered levels of superoxide dismutase or peroxidase in transgenic plants under drought stress. The possible mechanism for drought tolerance in germinating seeds of faba bean involves increasing protein translation, decreasing DNA replication, and modifying chromatin. These findings offer invaluable insights into the reaction mechanism in response to drought stress in faba beans. The identified DEPs could be utilized in faba bean breeding initiatives to manage drought.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971895 | PMC |
http://dx.doi.org/10.3390/metabo14030175 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!