Lactic acid (LA) production has seen significant progress over the past ten years. LA has seen increased economic importance due to its broadening use in different sectors such as the food, medicine, polymer, cosmetic, and pharmaceutical industries. LA production bioprocesses using microorganisms are economically viable compared to chemical synthesis and can benefit from metabolic engineering for improved productivity, purity, and yield. Strategies to optimize LA productivity in microorganisms on the strain improvement end include modifying metabolic routes, adding gene coding for lactate transporters, inducing tolerance to organic acids, and choosing cheaper carbon sources as fuel. Many of the recent advances in this regard have involved the metabolic engineering of yeasts and filamentous fungi to produce LA due to their versatility in fuel choice and tolerance of industrial-scale culture conditions such as pH and temperature. This review aims to compile and discuss metabolic engineering innovations in LA production in yeasts and filamentous fungi over the 2013-2023 period, and present future directions of research in this area, thus bringing researchers in the field up to date with recent advances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971269 | PMC |
http://dx.doi.org/10.3390/jof10030207 | DOI Listing |
Arch Microbiol
January 2025
Institute of Chemistry, Federal Rural University of Rio de Janeiro, BR 465, km 7, Seropedica, RJ, Brazil.
The frequency of opportunistic fungal infections has been increasing, impacting agriculture, food, and health sectors. In this work, four thiosemicarbazone-chalcones (TC) were synthesized and evaluated by the radial diffusion method against filamentous fungi. All TCs were effective against Aspergillus parasiticus, especially the fluor-substituted one, with radial growth inhibition of 62,9% and 74,4% at the lower (0.
View Article and Find Full Text PDFInt J Food Microbiol
December 2024
Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil. Electronic address:
Orange juice is widely consumed worldwide due to its sensory and nutritional characteristics. This beverage is susceptible to contamination by acidic-tolerant microorganisms due to its low pH, especially filamentous fungi and yeasts. To minimize fungal spoilage, companies usually submit juice to thermal treatments; sanitizers are also applied on surfaces to maintain the microbiological quality.
View Article and Find Full Text PDFAppl Biochem Biotechnol
December 2024
Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India.
Early childhood caries (ECC), a severe form of dental caries, is exacerbated by the synergistic interaction between Streptococcus mutans and Candida albicans, leading to greater disease severity than their individual effects. This underscores the need for more targeted and potent therapeutic alternatives. Given the promising anti-infective properties of quaternary ammonium surfactants (QAS), this study explores the microbicidal properties of one such QAS, cetyltrimethylammonium chloride (CTAC), against both individual- and dual-species cultures of S.
View Article and Find Full Text PDFChemosphere
December 2024
University of Granada, Department of Microbiology, Granada, Spain. Electronic address:
The immobilization of microorganisms in polymeric hydrogel has gained attention as a potential method for applications in various fields, offering several advantages over traditional cell free-living technologies. The present study aims to compare the efficiency of selenium (Se) bioremediation and biorecovery by two different fungal types, both in their free and immobilized forms using alginate hydrogels. Our results demonstrated an improvement in the amount of Se(IV) removed from the hydrogels of Aspergillus ochraceus (∼97%) and Rhodotorula mucilaginosa (∼43%) compared to that of the planktonic cultures (∼57% and ∼9-17%).
View Article and Find Full Text PDFMicrob Pathog
December 2024
Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Chinese Medicine, Beijing, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China. Electronic address:
A striking characteristic of the human fungal pathogen Candida albicans is its ability to switch between budding yeast morphology and the filamentous form, facilitating its adaptation to changing host environments. The filamentous growth of C. albicans is mediated by various environmental factors, such as carbon dioxide (CO), N-acetylglucosamine (GlcNAc), serum, and high temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!