Numerous papers report the efficiency of the automatic interpretation capabilities of commercial algorithms. Unfortunately, these algorithms are proprietary, and academia has no means of directly contributing to these results. In fact, nothing at the same stage of development exists in academia. Despite the extensive research in ECG signal processing, from signal conditioning to expert systems, a cohesive single application for clinical use is not ready yet. This is due to a serious lack of coordination in the academic efforts, which involve not only algorithms for signal processing, but also the signal acquisition equipment itself. For instance, the different sampling rates and the different noise levels frequently found in the available signal databases can cause severe incompatibility problems when the integration of different algorithms is desired. Therefore, this work aims to solve this incompatibility problem by providing the academic community with a diagnostic-grade electrocardiograph. The intention is to create a new standardized ECG signals database in order to address the automatic interpretation problem and create an electrocardiography system that can fully assist clinical practitioners, as the proprietary systems do. Achieving this objective is expected through an open and coordinated collaboration platform for which a webpage has already been created.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969122PMC
http://dx.doi.org/10.3390/diagnostics14060600DOI Listing

Publication Analysis

Top Keywords

automatic interpretation
12
ecg signals
8
signal processing
8
processing signal
8
signal
5
collaborative platform
4
platform advancing
4
advancing automatic
4
interpretation ecg
4
signals numerous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!