Malignant tumors have become one of the serious public health problems in human safety and health, among which the chest and abdomen diseases account for the largest proportion. Early diagnosis and treatment can effectively improve the survival rate of patients. However, respiratory motion in the chest and abdomen can lead to uncertainty in the shape, volume, and location of the tumor, making treatment of the chest and abdomen difficult. Therefore, compensation for respiratory motion is very important in clinical treatment. The purpose of this review was to discuss the research and development of respiratory movement monitoring and prediction in thoracic and abdominal surgery, as well as introduce the current research status. The integration of modern respiratory motion compensation technology with advanced sensor detection technology, medical-image-guided therapy, and artificial intelligence technology is discussed and analyzed. The future research direction of intraoperative thoracic and abdominal respiratory motion compensation should be non-invasive, non-contact, use a low dose, and involve intelligent development. The complexity of the surgical environment, the constraints on the accuracy of existing image guidance devices, and the latency of data transmission are all present technical challenges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10967708 | PMC |
http://dx.doi.org/10.3390/biomimetics9030170 | DOI Listing |
Magn Reson Med
January 2025
Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari, Japan.
Purpose: Redox homeostasis plays a key role in regulating the overall health and development of organisms. This study aimed to develop a compact and mobile continuous-wave (CW) electron paramagnetic resonance (EPR) imager to facilitate stable, highly sensitive fast three-dimensional (3D) whole-body imaging of nitroxide-infused mice.
Methods: A multiturn loop gap resonator with a diameter of 30 mm and length of 35 mm was designed for whole-body EPR imaging.
Transl Lung Cancer Res
December 2024
Department of Radiation Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China.
Background: Stereotactic body radiation therapy (SBRT) is crucial for treating early-stage inoperable non-small cell lung cancer (NSCLC) due to its precision and high-dose delivery. This study aimed to investigate the dosimetric deviations in gated (GR) versus non-gated radiotherapy (NGR), analyzing the impact of tumor location, target volume, and tumor motion range on dose distribution accuracy.
Methods: Sixty patients treated with either gated (n=30) or non-gated (n=30) SBRT for early-stage NSCLC were retrospectively analyzed.
Respir Res
January 2025
Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
This study introduced a novel dual fixation method for the pulmonary vasculature and lung tissue in pulmonary hypertension (PH) rats, addressing the limitations of traditional fixation methods that failed to accurately preserve the in vivo status of pulmonary vascular morphology. The modified method involved a dual fixation process, combining individualized ventilation support and vascular perfusion to simulate the respiratory motion, pulmonary artery pressure and right ventricular output of the rat under in vivo conditions. Utilizing a monocrotaline-induced PH rat model, this study compared the dual fixation with the traditional immersion fixation, focusing on the quantitative assessment of alveolar expansion degree, capillary patency, endothelial cell quantity and wall thickness of pulmonary vein and artery.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.
Purpose: Pulmonary MRI faces challenges due to low proton density, rapid transverse magnetization decay, and cardiac and respiratory motion. The fermat-looped orthogonally encoded trajectories (FLORET) sequence addresses these issues with high sampling efficiency, strong signal, and motion robustness, but has not yet been applied to phase-resolved functional lung (PREFUL) MRI-a contrast-free method for assessing pulmonary ventilation during free breathing. This study aims to develop a reconstruction pipeline for FLORET UTE, enhancing spatial resolution for three-dimensional (3D) PREFUL ventilation analysis.
View Article and Find Full Text PDFInt J Surg Case Rep
January 2025
Department of Orthopedics and Trauma Surgery, Tribhuwan University, Institute of Medicine, Kathmandu, Nepal.
Introduction And Importance: Grisel syndrome (GS) is a rare but potentially lethal condition characterized by non-traumatic atlantoaxial subluxation primarily affecting pediatric population following inflammatory condition of head and neck. Early diagnosis and prompt treatment is crucial for better management of symptoms and better outcomes.
Case Presentation: 7-years-old child present with torticollis, sudden onset progressive neck pain, restricted range of motion and bilateral lymphadenopathy after upper respiratory tract infection (URTI).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!