Phase I clinical trials represent a critical point in drug development because the investigational medicinal product is being tested in humans for the first time. For this reason, it is essential to evaluate and identify the Maximum Tolerated Dose (MTD) and the safety of the new compound. To mitigate the possible risks associated with drug administration and treatment, the European Competent Authority issued various guidelines to provide provisions and harmonize risk management processes. In the UK and Italy, particular attention should be paid to the Medicines & Healthcare Products Regulatory Agency (MHRA) phase I accreditation scheme and the specific rules set by the Italian Drug Authority through the AIFA Determination no. 809/2015. Both reference documents are based on the concept of quality risk management while conducting phase I clinical studies. Moreover, the AIFA determination outlines specific requirements for those sites that want to conduct non-profit phase I clinical trials. Indeed, the document reports peculiar activities to the "Clinical Trial Quality Team", which is a team that should support the clinical site researchers in designing, starting, performing, and closing non-profit phase I studies. In this paper, we provide a general overview of the main European guidelines concerning the management of risks during phase I trials, focusing on the main peculiarities of the schemes and rules set by the MHRA and AIFA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969062PMC
http://dx.doi.org/10.3390/epidemiologia5010009DOI Listing

Publication Analysis

Top Keywords

phase clinical
16
clinical trials
12
risk management
8
rules set
8
aifa determination
8
non-profit phase
8
phase
7
clinical
5
requirements managing
4
managing phase
4

Similar Publications

Background: Objective structured clinical examinations (OSCEs) are a widely recognized and accepted method to assess clinical competencies but are often resource-intensive.

Objective: This study aimed to evaluate the feasibility and effectiveness of a virtual reality (VR)-based station (VRS) compared with a traditional physical station (PHS) in an already established curricular OSCE.

Methods: Fifth-year medical students participated in an OSCE consisting of 10 stations.

View Article and Find Full Text PDF

Objectives: This study introduces Smart Imitator (SI), a 2-phase reinforcement learning (RL) solution enhancing personalized treatment policies in healthcare, addressing challenges from imperfect clinician data and complex environments.

Materials And Methods: Smart Imitator's first phase uses adversarial cooperative imitation learning with a novel sample selection schema to categorize clinician policies from optimal to nonoptimal. The second phase creates a parameterized reward function to guide the learning of superior treatment policies through RL.

View Article and Find Full Text PDF

Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.

View Article and Find Full Text PDF

Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy limited by graft-versus-host disease (GVHD). In preclinical studies and early-phase clinical studies enrichment of donor regulatory T cells (Tregs) appears to prevent GVHD and promote healthy immunity.We enrolled 44 patients on an open-label, single-center, phase 2 efficacy study investigating if a precision selected and highly purified Treg cell therapy manufactured from donor mobilized peripheral blood improves one-year GVHD-free relapse free survival (GRFS) after myeloablative conditioning (trial NCT01660607).

View Article and Find Full Text PDF

Study Question: Do polycystic ovary syndrome (PCOS), menstrual cycle phases, and ovulatory status affect reproductive tract (RT) microbiome profiles?

Summary Answer: We identified microbial features associated with menstrual cycle phases in the upper and lower RT microbiome, but only two specific differences in the upper RT according to PCOS status.

What Is Known Already: The vaginal and uterine microbiome profiles vary throughout the menstrual cycle. Studies have reported alterations in the vaginal microbiome among women diagnosed with PCOS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!