Copper oxide nanoparticles (NCuO) have emerged as an alternative to pesticides due to their antifungal effect against various phytopathogens. Combining them with fungicides represents an advantageous strategy for reducing the necessary amount of both agents to inhibit fungal growth, simultaneously reducing their environmental release. This study aimed to evaluate the antifungal activity of NCuO combined with three fungicide models separately: Iprodione (IPR), Tebuconazole (TEB), and Pyrimethanil (PYR) against two phytopathogenic fungi: and The fractional inhibitory concentration (FIC) was calculated as a synergism indicator (FIC ≤ 0.5). The NCuO interacted synergistically with TEB against both fungi and with IPR only against . The interaction with PYR was additive against both fungi (FIC > 0.5). The biomass was inhibited by 80.9% and 93% using 20 mg L NCuO + 1.56 mg L TEB, and 40 mg L NCuO + 12 µg L IPR, respectively, without significant differences compared to the inhibition provoked by 160 mg L NCuO. Additionally, the protein leakage and nucleic acid release were also evaluated as mechanisms associated with the synergistic effect. The results obtained in this study revealed that combining nanoparticles with fungicides can be an adequate strategy to significantly reduce the release of metals and agrochemicals into the environment after being used as antifungals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10967597PMC
http://dx.doi.org/10.3390/antibiotics13030215DOI Listing

Publication Analysis

Top Keywords

copper oxide
8
oxide nanoparticles
8
ncuo
6
potential antifungal
4
antifungal copper
4
nanoparticles combined
4
combined fungicides
4
fungicides copper
4
nanoparticles ncuo
4
ncuo emerged
4

Similar Publications

Environmentally persistent free radicals stimulate CYP2E1-mediated generation of reactive oxygen species at the expense of substrate metabolism.

Drug Metab Dispos

January 2025

Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana. Electronic address:

Environmentally persistent free radicals (EPFRs) are a recently recognized component of particulate matter that cause respiratory and cardiovascular toxicity. The mechanism of EPFR toxicity appears to be related to their ability to generate reactive oxygen species (ROS), causing oxidative damage. EPFRs were shown to affect cytochrome P450 (P450) function, inducing the expression of some forms through the Ah receptor.

View Article and Find Full Text PDF

Ultrasound-Activated Copper Matrix Nanosonosensitizer for Cuproptosis-Based Synergy Therapy.

ACS Appl Bio Mater

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO-Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response.

View Article and Find Full Text PDF

Stable Operation of Copper-Protected La(FeMnSi)H Regenerators in a Magnetic Cooling Unit.

ACS Appl Eng Mater

January 2025

Magnotherm Solutions GmbH, Pfungstädter Straße 102, 64297 Darmstadt, Germany.

Magnetic refrigeration leads the current commercialization efforts of ambient caloric cooling technologies, is considered among its peers most promising in terms of anticipated energy efficiency gain, and allows for complete elimination of harmful coolants. By now, functional magnetocaloric components (so-called regenerators) based on Mn-substituted and hydrogenated LaFeSi alloys are commercially available. However, this alloy system exhibits magnetostriction, is susceptible to fracture, oxidation, and does not passivate well, rendering it prone to failure and corrosion, particularly when using water as favorable heat exchange medium.

View Article and Find Full Text PDF

Copper-dependent halogenase catalyses unactivated C-H bond functionalization.

Nature

January 2025

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.

Carbon-hydrogen (C-H) bonds are the foundation of essentially every organic molecule, making them an ideal place to do chemical synthesis. The key challenge is achieving selectivity for one particular C(sp)-H bond. In recent years, metalloenzymes have been found to perform C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Copper excess induces autophagy dysfunction and mitochondrial ROS-ferroptosis progression, inhibits cellular biosynthesis of milk protein and lipid in bovine mammary epithelial cells.

Ecotoxicol Environ Saf

January 2025

College of Animal Science, Jilin University, Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding In Northeastern Frigid Area, Changchun 130062, China. Electronic address:

Excessive copper (Cu) has the potential risk to ecosystems and organism health, with its impact on dairy cow mammary glands being not well-defined. This study used a bovine mammary epithelial cell (MAC-T) model to explore how copper excess affects cellular oxidative stress, autophagy, ferroptosis, and protein and lipid biosynthesis in milk. Results showed the increased intracellular ROS, MDA, and CAT (P < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!