Antimicrobial resistance is a critical challenge due to the overuse of conventional antimicrobials, and alternative solutions are urgently needed. This study investigates the efficacy of compounds derived from lactic acid bacteria (LAB) fermentation combined with antibiotics against multidrug-resistant pathogens isolated from clinical cases in a hospital setting. Strains of , , and and were isolated and selected from blood, respiratory, and urine samples. They were tested against the fermentation products from the Ingulados LAB collection (BAL5, BAL6, BAL8, BAL13, and BAL16), recognized for their antimicrobial efficacy against veterinary pathogens. The activity against multidrug-resistant (MDR) pathogens was evaluated initially, followed by synergy tests using checkerboard assays and subsequent analysis. Bioinformatic assessments and supernatant treatments were performed to characterize the nature of the compounds responsible for the antimicrobial activity. Notably, BAL16 exhibited significant growth inhibition against multidrug-resistant . Synergy tests highlighted its combined activity with tetracycline through FICI and surface analysis and bioinformatic analysis unveiled the protein fraction containing bacteriocins as the underlying mechanism. This study highlights BAL16 fermentation products potential as valuable antimicrobial agents against MDR infections, attributed to bacteriocins. Further in-depth studies are necessary for complete bacteriocin characterization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10967309 | PMC |
http://dx.doi.org/10.3390/antibiotics13030200 | DOI Listing |
BMC Infect Dis
December 2024
Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
Background: Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and the most common multidrug-resistant pathogen. This study aimed to determine antimicrobial resistance patterns, biofilm-forming capacity, and associated factors of multidrug resistance in P. aeruginosa isolates at two hospitals in Addis Ababa, Ethiopia.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
Background: Pseudomonas aeruginosa is a major cause of healthcare-associated infections (HAIs), particularly in immunocompromised patients, leading to high morbidity and mortality rates. This study aimed to investigate the antimicrobial resistance patterns, virulence gene profiles, and genetic diversity among P. aeruginosa isolates from hospitalized patients in Mazandaran, Iran.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
Background: Klebsiella pneumoniae is a clinically relevant pathogen that has raised considerable public health concerns. This study aims to determine the presence of beta-lactamase genes and perform molecular genotyping of multidrug-resistant (MDR) K. pneumoniae clinical isolates.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil. Electronic address:
Antimicrobial resistance is currently one of the biggest challenges in controlling infectious diseases and was listed among the top 10 threats to global health by the World Health Organization (WHO) in 2023. The antibiotics misuse has led to the widespread emergence of antimicrobial resistance, marking the beginning of the alarming increase in antibiotic resistance. In this context, Antimicrobial Photodynamic Therapy (aPDT) has garnered significant attention from the scientific community due to its potential to effectively eliminate multidrug-resistant pathogenic bacteria and its low propensity to induce drug resistance, which bacteria can quickly develop against traditional antibiotic treatments.
View Article and Find Full Text PDFBMC Res Notes
December 2024
Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Box 63, Buea, Cameroon.
Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) is a zoonotic pathogen that poses a serious threat to veterinary and public health worldwide. We investigated mastitis milk samples for contamination with MRSA and also characterized the MRSA isolates by investigating antimicrobial resistance and virulence factors.
Result: We confirmed MRSA in 69 of 201 (34.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!